Nano Research

, Volume 9, Issue 11, pp 3494–3503 | Cite as

Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction

  • Huimin Liu
  • Xinyu Liu
  • Yumei Li
  • Yufeng Jia
  • Yawen Tang
  • Yu Chen
Research Article


The development of active and methanol-tolerant cathode electrocatalysts for the oxygen reduction reaction (ORR) is extremely important for accelerating the commercial viability of direct methanol fuel cells (DMFCs). In this work, we present an efficient and template-free route for facile synthesis of cyanide (CN−)-functionalized PtNi hollow nanospheres (PtNi@CN HNSs) with a high alloying degree using a simple cyanogel reduction method at room temperature. The physical and electrocatalytic properties of the PtNi@CN HNSs were investigated by various physical and electrochemical techniques. The PtNi@CN HNSs exhibited significantly enhanced electrocatalytic activity, durability, and particular methanol tolerance for the ORR as compared to commercial Pt black, and thus they are promising cathode electrocatalysts for DMFCs.


cyanogel PtNi alloy chemical functionalization oxygen reduction reaction methanol tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1226_MOESM1_ESM.pdf (1.5 mb)
Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction


  1. [1]
    Fu, G. T.; Zhang, Q.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Res. 2015, 8, 3963–3971.CrossRefGoogle Scholar
  2. [2]
    Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.CrossRefGoogle Scholar
  3. [3]
    Nassr, A. B. A. A.; Sinev, I.; Pohl, M. M.; Grünert, W.; Bron, M. Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation. ACS Catal. 2014, 4, 2449–2462.CrossRefGoogle Scholar
  4. [4]
    Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Onepot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.CrossRefGoogle Scholar
  5. [5]
    Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.CrossRefGoogle Scholar
  6. [6]
    Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266–6291.CrossRefGoogle Scholar
  7. [7]
    Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy Environ. Sci. 2014, 7, 1628–1632.CrossRefGoogle Scholar
  8. [8]
    Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.CrossRefGoogle Scholar
  9. [9]
    Li, L.; Hu, L. P.; Li, J.; Wei, Z. D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015, 8, 418–440.CrossRefGoogle Scholar
  10. [10]
    Li, Y. J.; Quan, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.CrossRefGoogle Scholar
  11. [11]
    Baldizzone, C.; Gan, L.; Hodnik, N.; Keeley, G. P.; Kostka, A.; Heggen, M.; Strasser, P.; Mayrhofer, K. J. J. Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal. 2015, 5, 5000–5007.CrossRefGoogle Scholar
  12. [12]
    Choi, S.-I.; Shao, M. H.; Lu, N.; Ruditskiy, A.; Peng, H.-C.; Park, J.; Guerrero, S.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and characterization of Pd@Pt-Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 2014, 8, 10363–10371.CrossRefGoogle Scholar
  13. [13]
    Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Lee, M. J.; Jang, J. H.; Sung, Y. E. Tuning the oxygen reduction activity of the Pt-Ni nanoparticles upon specific anion adsorption by varying heat treatment atmospheres. Phys. Chem. Chem. Phys. 2014, 16, 13726–13732.CrossRefGoogle Scholar
  14. [14]
    Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.CrossRefGoogle Scholar
  15. [15]
    Kuttiyiel, K. A.; Choi, Y.; Hwang, S. M.; Park, G. G.; Yang, T. H.; Su, D.; Sasaki, K.; Liu, P.; Adzic, R. R. Enhancement of the oxygen reduction on nitride stabilized Pt-M (M = Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy 2015, 13, 442–449.CrossRefGoogle Scholar
  16. [16]
    Li, M.; Lei, Y. H.; Sheng, N.; Ohtsuka, T. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells. J. Power Sources 2015, 294, 420–429.CrossRefGoogle Scholar
  17. [17]
    Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S. J.; Jiang, Y.; Wang, Y.; Tsung, C. K. Shaped Pd- Ni-Pt core–sandwich–shell nanoparticles: Influence of Ni sandwich layers on catalytic electrooxidations. ACS Nano 2014, 8, 7239–7250.CrossRefGoogle Scholar
  18. [18]
    Todoroki, N.; Kato, T.; Hayashi, T.; Takahashi, S.; Wadayama, T. Pt-Ni nanoparticle-stacking thin film: Highly active electrocatalysts for oxygen reduction reaction. ACS Catal. 2015, 5, 2209–2212.CrossRefGoogle Scholar
  19. [19]
    Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.Google Scholar
  20. [20]
    Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.CrossRefGoogle Scholar
  21. [21]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. 2014, 126, 12730–12735.CrossRefGoogle Scholar
  22. [22]
    Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Size-dependent oxygen reduction property of octahedral Pt-Ni nanoparticle electrocatalysts. J. Mater. Chem. A 2014, 2, 19778–19787.CrossRefGoogle Scholar
  23. [23]
    Zhang, C. L.; Hwang, S. Y.; Trout, A.; Peng, Z. M. Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction Reaction. J. Am. Chem. Soc. 2014, 136, 7805–7808.CrossRefGoogle Scholar
  24. [24]
    Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 8535–8542.CrossRefGoogle Scholar
  25. [25]
    Bae, S. J.; Yoo, S. J.; Lim, Y.; Kim, S.; Lim, Y.; Choi, J.; Nahm, K. S.; Hwang, S. J.; Lim, T.-H.; Kim, S.-K. et al. Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance. J. Mater. Chem. 2012, 22, 8820–8825.CrossRefGoogle Scholar
  26. [26]
    Cui, C. H.; Li, H. H.; Yu, S. H. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst. Chem. Sci. 2011, 2, 1611–1614.CrossRefGoogle Scholar
  27. [27]
    Ding, L. X.; Wang, A.-L.; Li, G.-R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.CrossRefGoogle Scholar
  28. [28]
    Hu, Y. J.; Wu, P.; Yin, Y. J.; Zhang, H.; Cai, C. X. Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B: Environ. 2012, 111–112, 208–217.CrossRefGoogle Scholar
  29. [29]
    Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.CrossRefGoogle Scholar
  30. [30]
    Li, L. H.; Wu, Y. E.; Lu, J.; Nan, C. Y.; Li, Y. D. Synthesis of Pt-Ni/graphene via in situ reduction and its enhanced catalyst activity for methanol oxidation. Chem. Commun. 2013, 49, 7486–7488.CrossRefGoogle Scholar
  31. [31]
    Liu, X. J.; Cui, C. H.; Gong, M.; Li, H. H.; Xue, Y.; Fan, F. J.; Yu, S. H. Pt-Ni alloyed nanocrystals with controlled architectures for enhanced methanol oxidation. Chem. Commun. 2013, 49, 8704–8706.CrossRefGoogle Scholar
  32. [32]
    Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.CrossRefGoogle Scholar
  33. [33]
    Wang, L. L.; Zhang, D. F.; Guo, L. Phase-segregated Pt-Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 2014, 6, 4635–4641.CrossRefGoogle Scholar
  34. [34]
    Ye, S. H.; Feng, J. X.; Wang, A. L.; Xu, H.; Li, G. R. Multilayered Pt/Ni nanotube arrays with enhanced catalytic performance for methanol electrooxidation. J. Mater. Chem. A 2015, 3, 23201–23206.CrossRefGoogle Scholar
  35. [35]
    Escudero-Escribano, M.; Zoloff Michoff, M. E.; Leiva, E. P. M.; Markovic, N. M.; Gutié rrez, C.; Cuesta, Á. Quantitative study of non-covalent interactions at the electrode–electrolyte interface using cyanide-modified Pt(111) electrodes. Chemphyschem 2011, 12, 2230–2234.CrossRefGoogle Scholar
  36. [36]
    Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2010, 2, 880–885.CrossRefGoogle Scholar
  37. [37]
    Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 2010, 9, 998–1003.CrossRefGoogle Scholar
  38. [38]
    Genorio, B.; Subbaraman, R.; Strmcnik, D.; Tripkovic, D.; Stamenkovic, V. R.; Markovic, N. M. Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells. Angew. Chem., Int. Ed. 2011, 50, 5468–5472.CrossRefGoogle Scholar
  39. [39]
    Tong, Y. J. Unconventional promoters of catalytic activity in electrocatalysis. Chem. Soc. Rev. 2012, 41, 8195–8209.CrossRefGoogle Scholar
  40. [40]
    Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbü hler, K.; van Bokhoven, J. A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081.CrossRefGoogle Scholar
  41. [41]
    Marshall, S. T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853–858.CrossRefGoogle Scholar
  42. [42]
    Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E. V. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 2012, 12, 5382–5388.CrossRefGoogle Scholar
  43. [43]
    Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.CrossRefGoogle Scholar
  44. [44]
    Tan, Y. M.; Xu, C. F.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. A graphene-platinum nanoparticles-ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 6923–6927.Google Scholar
  45. [45]
    Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907.CrossRefGoogle Scholar
  46. [46]
    Xu, G. R.; Han, S. H.; Liu, Z. H.; Chen Y. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property. J. Power Sources 2016, 306, 587–592.CrossRefGoogle Scholar
  47. [47]
    Li, F. M.; Gao, X. Q.; Li, S. N.; Chen, Y.; Lee, J. M. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015, 7, e219.CrossRefGoogle Scholar
  48. [48]
    Fu, G. T.; Jiang, X.; Gong, M. X.; Chen, Y.; Tang, Y. W.; Lin, J.; Lu, T. H. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale 2014, 6, 8226–8234.CrossRefGoogle Scholar
  49. [49]
    Liu, X. Y.; Xu, G. R.; Chen, Y.; Lu, T. H.; Tang, Y. W.; Xing, W. A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci. Rep. 2015, 5, 7619.CrossRefGoogle Scholar
  50. [50]
    Zhang, L.; Lu, D. K.; Chen, Y.; Tang, Y. W.; Lu, T. H. Facile synthesis of Pd-Co-P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. J. Mater. Chem. A 2014, 2, 1252–1256.CrossRefGoogle Scholar
  51. [51]
    Liu, X. Y.; Fu, G. T.; Chen, Y.; Tang, Y. W.; She, P. L.; Lu, T. H. Pt-Pd-Co trimetallic alloy network nanostructures with superior electrocatalytic activity towards the oxygen reduction reaction. Chem.—Eur. J. 2014, 20, 585–590.CrossRefGoogle Scholar
  52. [52]
    Zhang, L.; Wan, L.; Ma, Y. R.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B: Environ. 2013, 138–139, 229–235.CrossRefGoogle Scholar
  53. [53]
    Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.CrossRefGoogle Scholar
  54. [54]
    Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.CrossRefGoogle Scholar
  55. [55]
    Chen, L. Y.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. W. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electrooxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364–4370.CrossRefGoogle Scholar
  56. [56]
    Yang, J.; Zhou, W.; Cheng, C. H.; Lee, J. Y.; Liu, Z. Ptdecorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 2010, 2, 119–126.CrossRefGoogle Scholar
  57. [57]
    Zhang, G.; Shao, Z. G.; Lu, W. T.; Xiao, H.; Xie, F.; Qin, X. P.; Li, J.; Liu, F. Q.; Yi, B. L. Aqueous-phase synthesis of sub 10 nm Pdcore@Ptshell nanocatalysts for oxygen reduction reaction using amphiphilic triblock copolymers as the reductant and capping agent. The J. Phys. Chem. C 2013, 117, 13413–13423.CrossRefGoogle Scholar
  58. [58]
    Hsieh, C. T.; Yu, P.-Y.; Tzou, D. Y.; Hsu, J.-P.; Chiu, Y. R. Bimetallic Pd–Rh nanoparticles onto reduced graphene oxide nanosheets as electrocatalysts for methanol oxidation. J. Electroanal. Chem. 2016, 761, 28–36.CrossRefGoogle Scholar
  59. [59]
    Li, T.; You, H.; Xu, M. W.; Song, X. P.; Fang, J. X. Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Interfaces 2012, 4, 6942–6948.CrossRefGoogle Scholar
  60. [60]
    Li, C. L.; Jiang, B.; Imura, M.; Malgras, V.; Yamauchi, Y. Mesoporous Pt hollow cubes with controlled shell thicknesses and investigation of their electrocatalytic performance. Chem. Commun. 2014, 50, 15337–15340.CrossRefGoogle Scholar
  61. [61]
    Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/ nanostructures. Chem. Rev., in press, DOI: 10.1021/ acs.chemrev.5b00731.Google Scholar
  62. [62]
    Li, Y. S.; Shi, J. L. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 2014, 26, 3176–3205.CrossRefGoogle Scholar
  63. [63]
    Fu, G. T.; Wu, K.; Lin, J.; Tang, Y. W.; Chen, Y.; Zhou, Y. M.; Lu, T. H. One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanoltolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.CrossRefGoogle Scholar
  64. [64]
    Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106.CrossRefGoogle Scholar
  65. [65]
    Wang, R. Y.; Xu, C. X.; Bi, X. X.; Ding, Y. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 2012, 5, 5281–5286.CrossRefGoogle Scholar
  66. [66]
    Zhu, C. M.; Gao, A.; Wang, Y.; Liu, Y. Pt–Cu bimetallic electrocatalysts with enhanced catalytic properties for oxygen reduction. Chem. Commun. 2014, 50, 13889–13892.CrossRefGoogle Scholar
  67. [67]
    Bae, J. H.; Han, J. H.; Chung, T. D. Electrochemistry at nanoporous interfaces: New opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 2012, 14, 448–463.CrossRefGoogle Scholar
  68. [68]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  69. [69]
    Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 2015, 5, 5333–5341.CrossRefGoogle Scholar
  70. [70]
    Zhu, J. B.; Xiao, M. L.; Zhao, X.; Liu, C. P.; Ge, J. J.; Xing, W. Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy 2015, 13, 318–326.CrossRefGoogle Scholar
  71. [71]
    Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells. Appl. Catal. B: Environ. 2005, 57, 283–290.CrossRefGoogle Scholar
  72. [72]
    Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 2014, 5, 5040.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations