Nano Research

, Volume 9, Issue 11, pp 3355–3363 | Cite as

Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization

  • Guanlin Liu
  • Hengyu Guo
  • Lin Chen
  • Xue Wang
  • Dapeng Wei
  • Chenguo HuEmail author
Research Article


Integrated multilayered triboelectric nanogenerators (TENGs) are an efficient approach to solve the insufficient energy problem caused by a single-layered TENG for achieving high output power density. However, most integrated multilayered TENGs have a relatively large volume. Here, a double-induced-mode integrated triboelectric nanogenerator (DI-TENG) based on spring steel plates is presented as a cost-effective, simple, and high-performance device for ambient vibration energy harvesting. The unique stackable rhombus structure, in which spring steel plates act both as skeletons and as electrodes, can enhance the output performance and maximize space utilization. The DI-TENG with five repeated units in a volume of 12 cm × 5 cm × 0.4 cm can generate a short-circuit current of 51 μA and can transfer charges of 1.25 μC in a half period. The contrast experiment is conducted systematically and the results have proved that the DI-TENG has a great advantage over the single-induced-mode TENG (SI-TENG) with only one side of a friction layer on its electrode. Besides, the DI-TENG can easily power a commercial calculator and can be used as a door switch sensor.


triboelectric nanogenerator double-induced-mode spring steel stackable rhombus structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1213_MOESM1_ESM.pdf (2.6 mb)
Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization
12274_2016_1213_MOESM2_ESM.avi (5 mb)
Supplementary material, approximately 4.97 MB.


  1. [1]
    Evan, D. The internet of things: How the next evolution of the internet is changing everything. en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed Jun 13, 2016).Google Scholar
  2. [2]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  3. [3]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.CrossRefGoogle Scholar
  4. [4]
    Wu, N.; Cheng, X. F.; Zhong, Q. Z.; Zhong, J. W.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.CrossRefGoogle Scholar
  5. [5]
    Beeby, S. P.; Tudor, M. J.; White, N. M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195.CrossRefGoogle Scholar
  6. [6]
    Li, W. B.; Wu, N.; Zhong, J. W.; Zhong, Q. Z.; Zhao, S.; Wang, B.; Cheng, X. F.; Li, S. L.; Liu, K.; Hu, B. et al. Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 2016, 26, 1964–1974.CrossRefGoogle Scholar
  7. [7]
    Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.CrossRefGoogle Scholar
  8. [8]
    Lu, S. N.; Liao, Q. L.; Qi, J. J.; Liu, S.; Liu, Y. C.; Liang, Q. J.; Zhang, G. J.; Zhang, Y. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 2016, 9, 372–379.CrossRefGoogle Scholar
  9. [9]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  10. [10]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  11. [11]
    Liu, Y.; Niu, S. M.; Wang, Z. L. Theory of tribotronics. Adv. Electron. Mater. 2015, 1, 1500124.CrossRefGoogle Scholar
  12. [12]
    Cui, N. Y.; Liu, J. M.; Gu, L.; Bai, S.; Chen, X. B.; Qin, Y. Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interfaces 2015, 7, 18225–18230.CrossRefGoogle Scholar
  13. [13]
    Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.CrossRefGoogle Scholar
  14. [14]
    Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.CrossRefGoogle Scholar
  15. [15]
    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.CrossRefGoogle Scholar
  16. [16]
    Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.CrossRefGoogle Scholar
  17. [17]
    Weiss, P. S. A conversation with prof. Zhong Lin Wang, energy harvester. ACS Nano 2015, 9, 2221–2226.CrossRefGoogle Scholar
  18. [18]
    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.CrossRefGoogle Scholar
  19. [19]
    Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.CrossRefGoogle Scholar
  20. [20]
    Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.CrossRefGoogle Scholar
  21. [21]
    Zhong, J. W.; Zhu, H. L.; Zhong, Q. Z.; Dai, J. Q.; Li, W. B.; Jang, S.-H.; Yao, Y. G.; Henderson, D.; Hu, Q. Y.; Hu, L. B. et al. Self-powered Human-interactive transparent nanopaper systems. ACS Nano 2015, 9, 7399–7406.CrossRefGoogle Scholar
  22. [22]
    Zhong, J. W.; Zhong, Q. Z.; Hu, Q. Y.; Wu, N.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Stretchable self-powered fiberbased strain sensor. Adv. Funct. Mater. 2015, 25, 1798–1803.CrossRefGoogle Scholar
  23. [23]
    Liu, G. L.; Xu, W. N.; Xia, X. N.; Shi, H. F.; Hu, C. G. Newton’s cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation. J. Mater. Chem. A 2015, 3, 21133–21139.CrossRefGoogle Scholar
  24. [24]
    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.CrossRefGoogle Scholar
  25. [25]
    Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.CrossRefGoogle Scholar
  26. [26]
    Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.CrossRefGoogle Scholar
  27. [27]
    Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.CrossRefGoogle Scholar
  28. [28]
    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.CrossRefGoogle Scholar
  29. [29]
    Meng, B.; Tang, W.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2013, 2, 1101–1106.CrossRefGoogle Scholar
  30. [30]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.CrossRefGoogle Scholar
  31. [31]
    Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.CrossRefGoogle Scholar
  32. [32]
    Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.CrossRefGoogle Scholar
  33. [33]
    Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692.CrossRefGoogle Scholar
  34. [34]
    Hou, T.-C.; Yang, Y.; Zhang, H. L.; Chen, J.; Chen, L.-J.; Wang, Z. L. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2013, 2, 856–862.CrossRefGoogle Scholar
  35. [35]
    Huang, T.; Wang, C.; Yu, H.; Wang, H. Z.; Zhang, Q. H.; Zhu, M. F. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 2015, 14, 226–235.CrossRefGoogle Scholar
  36. [36]
    Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.CrossRefGoogle Scholar
  37. [37]
    Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.CrossRefGoogle Scholar
  38. [38]
    Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.Google Scholar
  39. [39]
    Liu, G. L.; Liu, R. P.; Guo, H. Y.; Xi, Y.; Wei, D. P.; Hu, C. G. A novel triboelectric generator based on the combination of a waterwheel-like electrode with a spring steel plate for efficient harvesting of low-velocity rotational motion energy. Adv. Electron. Mater. 2016, 2, 1500448.CrossRefGoogle Scholar
  40. [40]
    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.CrossRefGoogle Scholar
  41. [41]
    Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.CrossRefGoogle Scholar
  42. [42]
    Bai, P.; Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.CrossRefGoogle Scholar
  43. [43]
    Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.CrossRefGoogle Scholar
  44. [44]
    Li, X. H.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Cylindrical spiral triboelectric nanogenerator. Nano Res. 2015, 8, 3197–3204.CrossRefGoogle Scholar
  45. [45]
    Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.CrossRefGoogle Scholar
  46. [46]
    Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.CrossRefGoogle Scholar
  47. [47]
    Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.CrossRefGoogle Scholar
  48. [48]
    Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Su, Y. J.; Wu, Z. Y.; Wang, Z. L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 2014, 6, 129–136.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Guanlin Liu
    • 1
  • Hengyu Guo
    • 1
  • Lin Chen
    • 1
  • Xue Wang
    • 1
  • Dapeng Wei
    • 2
  • Chenguo Hu
    • 1
    Email author
  1. 1.Department of Applied PhysicsChongqing UniversityChongqingChina
  2. 2.Chongqing Engineering Research Center of Graphene Film ManufacturingChongqingChina

Personalised recommendations