Nano Research

, Volume 9, Issue 11, pp 3279–3290 | Cite as

Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates

  • Alessandro Surrente
  • Romain Carron
  • Pascal Gallo
  • Alok Rudra
  • Benjamin Dwir
  • Eli KaponEmail author
Research Article


We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.


metalorganic vapor phase epitaxy kinetic Monte Carlo simulations epitaxial growth on patterned substrates symmetry elevation adatom diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1206_MOESM1_ESM.pdf (723 kb)
Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates
12274_2016_1206_MOESM2_ESM.mpg (4.5 mb)
Supplementary material, approximately 4.45 MB.
12274_2016_1206_MOESM3_ESM.mpg (4.8 mb)
Supplementary material, approximately 4.78 MB.


  1. [1]
    Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400.CrossRefGoogle Scholar
  2. [2]
    Shields, A. J. Semiconductor quantum light sources. Nat. Photonics 2007, 1, 215–223.CrossRefGoogle Scholar
  3. [3]
    Kok, P.; Munro, W. J.; Nemoto, K.; Ralph, T. C.; Dowling, J. P.; Milburn, G. J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135–174.CrossRefGoogle Scholar
  4. [4]
    Faraon, A.; Majumdar, A.; Englund, D.; Kim, E.; Bajcsy, M.; Vuckovic, J. Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 2011, 13, 055025.CrossRefGoogle Scholar
  5. [5]
    Murray, E.; Ellis, D. J. P.; Meany, T.; Floether, F. F.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Bennett, A. J. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 2015, 107, 171108.CrossRefGoogle Scholar
  6. [6]
    Benson, O.; Santori, C.; Pelton, M.; Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 2000, 84, 2513–2516.CrossRefGoogle Scholar
  7. [7]
    Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A. A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T. L. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315.CrossRefGoogle Scholar
  8. [8]
    Young, R. J.; Stevenson, R. M.; Shields, A. J.; Atkinson, P.; Cooper, K.; Ritchie, D. A.; Groom, K. M.; Tartakovskii, A. I.; Skolnick, M. S. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 2005, 72, 113305.CrossRefGoogle Scholar
  9. [9]
    Mlinar, V.; Zunger, A. Effect of atomic-scale randomness on the optical polarization of semiconductor quantum dots. Phys. Rev. B 2009, 79, 115416.CrossRefGoogle Scholar
  10. [10]
    Seguin, R.; Schliwa, A.; Rodt, S.; Pötschke, K.; Pohl, U. W.; Bimberg, D. Size-dependent fine-structure splitting in selforganized InAs/GaAs quantum dots. Phys. Rev. Lett. 2005, 95, 257402.CrossRefGoogle Scholar
  11. [11]
    Singh, R.; Bester, G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 2009, 103, 063601.CrossRefGoogle Scholar
  12. [12]
    Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Gocalinska, A.; Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 2013, 7, 527–531.CrossRefGoogle Scholar
  13. [13]
    Kuroda, T.; Mano, T.; Ha, N.; Nakajima, H.; Kumano, H.; Urbaszek, B.; Jo, M.; Abbarchi, M.; Sakuma, Y.; Sakoda, K. et al. Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 2013, 88, 041306.CrossRefGoogle Scholar
  14. [14]
    Juska, G.; Murray, E.; Dimastrodonato, V.; Chung, T. H.; Moroni, S. T.; Gocalinska, A.; Pelucchi, E. Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots. J. Appl. Phys. 2015, 117, 134302.CrossRefGoogle Scholar
  15. [15]
    Hughes, B. K.; Luther, J. M.; Beard, M. C. The subtle chemistry of colloidal, quantum-confined semiconductor nanostructures. ACS Nano 2012, 6, 4573–4579.CrossRefGoogle Scholar
  16. [16]
    Kley, A.; Ruggerone, P.; Scheffler, M. Novel diffusion mechanism on the GaAs(001) surface: The role of adatomdimer interaction. Phys. Rev. Lett. 1997, 79, 5278–5281.CrossRefGoogle Scholar
  17. [17]
    Bester, G.; Zunger, A. Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 2005, 71, 045318.CrossRefGoogle Scholar
  18. [18]
    Schliwa, A.; Winkelnkemper, M.; Lochmann, A.; Stock, E.; Bimberg, D. In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs. Phys. Rev. B 2009, 80, 161307(R).CrossRefGoogle Scholar
  19. [19]
    Yamaguchi, H.; Belk, J. G.; Zhang, X. M.; Sudijono, J. L.; Fahy, M. R.; Jones, T. S.; Pashley, D. W.; Joyce, B. A. Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A. Phys. Rev. B 1997, 55, 1337–1340.CrossRefGoogle Scholar
  20. [20]
    Jo, M.; Mano, T.; Abbarchi, M.; Kuroda, T.; Sakuma, Y.; Sakoda, K. Self-limiting growth of hexagonal and triangular quantum dots on (111)A. Cryst. Growth Des. 2012, 12, 1411–1415.CrossRefGoogle Scholar
  21. [21]
    Kapon, E.; Pelucchi, E.; Watanabe, S.; Malko, A.; Baier, M. H.; Leifer, K.; Dwir, B.; Michelini, F.; Dupertuis, M. A. Site- and energy-controlled pyramidal quantum dot heterostructures. Phys. E 2004, 25, 288–297.CrossRefGoogle Scholar
  22. [22]
    Pelucchi, E.; Dimastrodonato, V.; Rudra, A.; Leifer, K.; Kapon, E.; Bethke, L.; Zestanakis, P. A.; Vvedensky, D. D. Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Phys. Rev. B 2011, 83, 205409.CrossRefGoogle Scholar
  23. [23]
    Dimastrodonato, V.; Pelucchi, E.; Vvedensky, D. D. Selflimiting evolution of seeded quantum wires and dots on patterned substrates. Phys. Rev. Lett. 2012, 108, 256102.CrossRefGoogle Scholar
  24. [24]
    Zhu, Q.; Karlsson, K. F.; Byszewski, M.; Rudra, A.; Pelucchi, E.; He, Z. B.; Kapon, E. Hybridization of electron and hole states in semiconductor quantum-dot molecules. Small 2009, 5, 329–335.CrossRefGoogle Scholar
  25. [25]
    Hartmann, A.; Loubies, L.; Reinhardt, F.; Kapon, E. Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates. Appl. Phys. Lett. 1997, 71, 1314–1316.CrossRefGoogle Scholar
  26. [26]
    Surrente, A.; Gallo, P.; Felici, M.; Dwir, B.; Rudra, A.; Kapon, E. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra. Nanotechnology 2009, 20, 415205.CrossRefGoogle Scholar
  27. [27]
    Leifer, K.; Hartmann, A.; Ducommun, Y.; Kapon, E. Carrier transport and luminescence in inverted-pyramid quantum structures. Appl. Phys. Lett. 2000, 77, 3923–3925.CrossRefGoogle Scholar
  28. [28]
    Hartmann, A.; Ducommun, Y.; Kapon, E.; Hohenester, U.; Molinari, E. Few-particle effects in semiconductor quantum dots: Observation of multicharged excitons. Phys. Rev. Lett. 2000, 84, 5648–5651.CrossRefGoogle Scholar
  29. [29]
    Mereni, L. O.; Marquardt, O.; Juska, G.; Dimastrodonato, V.; O’ Reilly, E. P.; Pelucchi, E. Fine-structure splitting in large-pitch pyramidal quantum dots. Phys. Rev. B 2012, 85, 155453.CrossRefGoogle Scholar
  30. [30]
    Karlsson, K. F.; Dupertuis, M. A.; Oberli, D. Y.; Pelucchi, E.; Rudra, A.; Holtz, P. O.; Kapon, E. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys. Rev. B 2010, 81, 161307(R).CrossRefGoogle Scholar
  31. [31]
    Karlsson, K. F.; Oberli, D. Y.; Dupertuis, M.-A.; Troncale, V.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Holtz, P. O.; Kapon, E. Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New J. Phys. 2015, 17, 103017.CrossRefGoogle Scholar
  32. [32]
    Baier, M. H.; Pelucchi, E.; Kapon, E.; Varoutsis, S.; Gallart, M.; Robert-Philip, I.; Abram, I. Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 2004, 84, 648–650.CrossRefGoogle Scholar
  33. [33]
    Calic, M.; Gallo, P.; Felici, M.; Atlasov, K. A.; Dwir, B.; Rudra, A.; Biasiol, G.; Sorba, L.; Tarel, G.; Savona, V. et al. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities. Phys. Rev. Lett. 2011, 106, 227402.CrossRefGoogle Scholar
  34. [34]
    Surrente, A.; Felici, M.; Gallo, P.; Dwir, B.; Rudra, A.; Biasiol, G.; Sorba, L.; Kapon, E. Ordered systems of sitecontrolled pyramidal quantum dots incorporated in photonic crystal cavities. Nanotechnology 2011, 22, 465203.CrossRefGoogle Scholar
  35. [35]
    Mohan, A.; Gallo, P.; Felici, M.; Dwir, B.; Rudra, A.; Faist, J.; Kapon, E. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 2010, 6, 1268–1272.CrossRefGoogle Scholar
  36. [36]
    Felici, M.; Gallo, P.; Mohan, A.; Dwir, B.; Rudra, A.; Kapon, E. Site-controlled InGaAs quantum dots with tunable emission energy. Small 2009, 5, 938–943.CrossRefGoogle Scholar
  37. [37]
    Surrente, A.; Felici, M.; Gallo, P.; Dwir, B.; Rudra, A.; Biasiol, G.; Kapon, E. Polarization properties and disorder effects in H3 photonic crystal cavities incorporating sitecontrolled, high-symmetry quantum dot arrays. Appl. Phys. Lett. 2015, 107, 031106.CrossRefGoogle Scholar
  38. [38]
    Jarlov, C.; Gallo, P.; Calic, M.; Dwir, B.; Rudra, A.; Kapon, E. Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 2012, 101, 191101.CrossRefGoogle Scholar
  39. [39]
    Rigal, B.; Jarlov, C.; Gallo, P.; Dwir, B.; Rudra, A.; Calic, M.; Kapon, E. Site-controlled quantum dots coupled to a photonic crystal molecule. Appl. Phys. Lett. 2015, 107, 141103.CrossRefGoogle Scholar
  40. [40]
    Jarlov, C.; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity. Appl. Phys. Lett. 2015, 107, 191101.CrossRefGoogle Scholar
  41. [41]
    Shitara, T.; Vvedensky, D. D.; Wilby, M. R.; Zhang, J.; Neave, J. H.; Joyce, B. A. Misorientation dependence of epitaxial growth on vicinal GaAs(001). Phys. Rev. B 1992, 46, 6825–6833.CrossRefGoogle Scholar
  42. [42]
    Khazanova, S. V.; Vasilevskiy, M. I. Modelling of the composition segregation effect during epitaxial growth of InGaAs quantum well heterostructures. Semicond. Sci. Tech. 2010, 25, 085008.CrossRefGoogle Scholar
  43. [43]
    Kaluza, A.; Schwarz, A.; Gauer, D.; Hardtdegen, H.; Nastase, N.; Lü th, H.; Schä pers, T.; Meertens, D.; Maciel, A.; Ryan, J. et al. On the choice of precursors for the MOVPEgrowth of high-quality Al0.30Ga0.70As/GaAs v-groove quantum wires with large subband spacing. J. Cryst. Growth 2000, 221, 91–97.CrossRefGoogle Scholar
  44. [44]
    Wang, Z.; Seebauer, E. G. Estimating pre-exponential factors for desorption from semiconductors: Consequences for a priori process modeling. Appl. Surf. Sci. 2001, 181, 111–120.CrossRefGoogle Scholar
  45. [45]
    Grandjean, N.; Massies, J.; Leroux, M. Monte Carlo simulation of In surface segregation during the growth of InxGa1-xAs on GaAs(001). Phys. Rev. B 1996, 53, 998–1001.CrossRefGoogle Scholar
  46. [46]
    Meixner, M.; Schöll, E.; Shchukin, V. A.; Bimberg, D. Self-assembled quantum dots: Crossover from kinetically controlled to thermodynamically limited growth. Phys. Rev. Lett. 2001, 87, 236101.CrossRefGoogle Scholar
  47. [47]
    Biasiol, G.; Kapon, E. Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces. Phys. Rev. Lett. 1998, 81, 2962–2965.CrossRefGoogle Scholar
  48. [48]
    Biasiol, G.; Gustafsson, A.; Leifer, K.; Kapon, E. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 2002, 65, 205306.CrossRefGoogle Scholar
  49. [49]
    Dalla Volta, A.; Vvedensky, D. D.; Gogneau, N.; Pelucchi, E.; Rudra, A.; Dwir, B.; Kapon, E.; Ratsch, C. Step ordering induced by nonplanar patterning of GaAs surfaces. Appl. Phys. Lett. 2006, 88, 203104.CrossRefGoogle Scholar
  50. [50]
    Moroni, S. T.; Dimastrodonato, V.; Chung, T.-H.; Juska, G.; Gocalinska, A.; Vvedensky, D. D.; Pelucchi, E. Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates. J. Appl. Phys. 2015, 117, 164313.CrossRefGoogle Scholar
  51. [51]
    Huggenberger, A.; Heckelmann, S.; Schneider, C.; Höfling, S.; Reitzenstein, S.; Worschech, L.; Kamp, M.; Forchel, A. Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Appl. Phys. Lett. 2011, 98, 131104.CrossRefGoogle Scholar
  52. [52]
    Schramm, A.; Tommila, J.; Strelow, C.; Hakkarainen, T. V.; Tukiainen, A.; Dumitrescu, M.; Mews, A.; Kipp, T.; Guina, M. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy. Nanotechnology 2012, 23, 175701.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandro Surrente
    • 1
  • Romain Carron
    • 1
  • Pascal Gallo
    • 1
  • Alok Rudra
    • 1
  • Benjamin Dwir
    • 1
  • Eli Kapon
    • 1
    Email author
  1. 1.Laboratory of Physics of NanostructuresÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations