Nano Research

, Volume 9, Issue 10, pp 3171–3178 | Cite as

Conductance hysteresis and inelastic excitations at hydrogen decorated cerium atoms and clusters in a tunnel junction

  • Rouzhaji Tuerhong
  • Shawulienu Kezilebieke
  • Bernard Barbara
  • Jean-Pierre Bucher
Research Article

Abstract

Voltage-controlled conductance and switching induced by single molecules or atoms are ideally studied in scanning tunneling microscope (STM) tunnel junctions. While the objects under consideration are mostly used in their original form, little is known of the possibilities of in situ adjustments of their properties. Here, we evidence properties of a tunnel junction made of a Ce atom/cluster built by atomic manipulation on Au(111) at a temperature of 4.6 K in the presence of H2. The conductance through the object is characterized by a switching voltage corresponding to an opening or closing of an inelastic electron tunneling conductance channel at 50 mV for a Ce atom and 140 mV for a Ce cluster and by charging. We demonstrate that the electronic properties of an STM junction can be engineered in a simple way by in situ guiding of the H2 pinning at an atomic cluster.

Keywords

conductance hysteresis inelastic electron tunneling spectroscopy (IETS) switching Ce clusters scanning tunneling microscope (STM)/scanning tunneling spectroscopy (STS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1202_MOESM1_ESM.pdf (691 kb)
Conductance hysteresis and inelastic excitations at hydrogen decorated cerium atoms and clusters in a tunnel junction

References

  1. [1]
    Troisi, A.; Ratner, M. A. Molecular signatures in the transport properties of molecular wire junctions: What makes a junction “molecular”. Small 2006, 2, 172–181.CrossRefGoogle Scholar
  2. [2]
    Zhang, J. L.; Zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T. S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022.CrossRefGoogle Scholar
  3. [3]
    Wang, Y. F.; Kröger, J.; Berndt, R.; Hofer, W. A. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 2009, 131, 3639–3643.CrossRefGoogle Scholar
  4. [4]
    Weight, S.; Busse, C.; Petersen, L.; Rauls, E.; Hammer, B.; Gothelf, K. V.; Besenbacher, F.; Linderoth, T. R. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nat. Mater. 2006, 5, 112–117.CrossRefGoogle Scholar
  5. [5]
    Qui, X. H.; Nazin, G. V.; Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 2004, 93, 196806.CrossRefGoogle Scholar
  6. [6]
    Leoni, T.; Guillermet, O.; Walch, H.; Langlais, V.; Scheuermann, A.; Bonvoisin, J.; Gauthier, S. Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 2011, 106, 216103.CrossRefGoogle Scholar
  7. [7]
    Gopakumar, T. G.; Matino, F.; Naggert, H.; Bannwarth, A.; Tuczek, F.; Berndt, R. Electron-induced spin crossover of single molecules in a bilayer on gold. Angew. Chem., Int. Ed. 2012, 51, 6262–6266.CrossRefGoogle Scholar
  8. [8]
    Wu, S. W.; Ogawa, N.; Nazin, G. V.; Ho, W. Conductance hysteresis and switching in a single-molecule junction. J. Phys. Chem. C 2008, 112, 5241–5244.CrossRefGoogle Scholar
  9. [9]
    Auwärter, W.; Seufert, K.; Bischoff, F.; Ecija, D.; Vijayaraghavan, S.; Joschi, S.; Klappenberger, F.; Samudrala, N.; Barth, J. V. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 2012, 7, 41–46.CrossRefGoogle Scholar
  10. [10]
    Eigler, D. M., Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.CrossRefGoogle Scholar
  11. [11]
    Repp, J.; Meyer, G.; Olsson, F. E.; Person, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.CrossRefGoogle Scholar
  12. [12]
    Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.CrossRefGoogle Scholar
  13. [13]
    Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 2007, 318, 1757–1760.CrossRefGoogle Scholar
  14. [14]
    Ma, S.; Zhao, X.; Rodriguez, J. A.; Hrbek, J. STM and XPS study of growth of Ce on Au(111). J. Phys. Chem. C 2007, 111, 3685–3691.CrossRefGoogle Scholar
  15. [15]
    Li, J. T.; Schneider, W. D.; Berndt, R.; Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 1998, 80, 2893–2896.CrossRefGoogle Scholar
  16. [16]
    Pivetta, M.; Ternes, M.; Patthey, F.; Schneider, W. D. Diatomic molecular switches to enable the observation of very-low-energy vibrations. Phys. Rev. Lett. 2007, 99, 126104.CrossRefGoogle Scholar
  17. [17]
    Hofer, W. A.; Teobaldi, G.; Lorente, N. Creating pseudo- Kondo resonances by field-induced diffusion of atomic hydrogen. Nanotechnology 2008, 19, 305701.CrossRefGoogle Scholar
  18. [18]
    Zhang, Z. W.; Zheng, W. T.; Jiang, Q. Hydrogen adsorption on Ce/BNNT systems: A DFT study. Int. J. Hydrogen Energy 2012, 37, 5090–5099.CrossRefGoogle Scholar
  19. [19]
    Gupta, J. A.; Lutz, C. P.; Heinrich, A. J.; Eigler, D. M. Strongly coverage-dependent excitations of adsorbed molecular hydrogen. Phys. Rev. B 2005, 71, 115416.CrossRefGoogle Scholar
  20. [20]
    Thijssen, W. H. A.; Djukic, D.; Otte, A. F.; Bremmer, R. H.; van Ruitenbeek, J. M. Vibrationally induced two-level systems in single-molecule junctions. Phys. Rev. Lett. 2006, 97, 226806.CrossRefGoogle Scholar
  21. [21]
    Tal, O.; Krieger, M.; Leerink, B.; van Ruitenbeek, J. M. Electron-vibration interaction in single-molecule junctions: From contact to tunneling regimes. Phys. Rev. Lett. 2008, 100, 196804.CrossRefGoogle Scholar
  22. [22]
    Trouwborst, M. L.; Huisman, E. H.; van der Molen, S. J.; van Wees, B. J. Bistable hysteresis and resistance switching in hydrogen-gold junctions. Phys. Rev. B 2009, 80, 081407.CrossRefGoogle Scholar
  23. [23]
    Li, S. W.; Yu, A.; Toledo, F.; Han, Z. M.; Wang, H.; He, H. Y.; Wu, R. Q.; Ho, W. Rotational and vibrational excitations of a hydrogen molecule trapped within a nanocavity of tunable dimension. Phys. Rev. Lett. 2013, 111, 146102.CrossRefGoogle Scholar
  24. [24]
    Natterer, F. D.; Patthey, F.; Brune, H. Distinction of nuclear spin states with the scanning tunneling microscope. Phys. Rev. Lett. 2013, 111, 175303.CrossRefGoogle Scholar
  25. [25]
    Lotze, C.; Corso, M.; Franke, K. J.; von Oppen, F.; Pascual, J. I. Driving a macroscopic oscillator with the stochastic motion of a hydrogen molecule. Science 2012, 338, 779–782.CrossRefGoogle Scholar
  26. [26]
    Yang, K.; Xiao, W. D.; Liu, L. W.; Fei, X. M.; Chen, H.; Du, S. X.; Gao, H. J. Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules. Nano Res. 2014, 7, 79–84.CrossRefGoogle Scholar
  27. [27]
    Stocker, M.; Röger, S.; Koslowski, B. The hydrogen molecule in a vice. 2015, arXiv:1503.07702. arXiv.org e-Print archive. http://arxiv.org/abs/1503.07702 (accessed Apr 20, 2016).Google Scholar
  28. [28]
    Cao, X. Y.; Dolg, M. Electronic structure of lanthanide dimers. Mol. Phys. 2003, 101, 1967–1976.CrossRefGoogle Scholar
  29. [29]
    Roos, B. O.; Lindh, R.; Malmqvist, P. A.; Veryazov, V.; Widmark, P. O. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. J. Phys. Chem. A 2008, 112, 11431–11435.CrossRefGoogle Scholar
  30. [30]
    Fernández-Torres, L. C.; Sykes, E. C. H.; Nanayakkara, S. U.; Weiss, P. S. Dynamics and spectroscopy of hydrogen atoms on Pd{111}. J. Phys. Chem. B 2006, 110, 7380–7384.CrossRefGoogle Scholar
  31. [31]
    den Broeder, F. J. A.; van der Molen, S. J.; Kremers, M.; Huiberts, J. N.; Nagengast, D. G.; van Gogh, A. T. M.; Huisman, W. H.; Koeman, N. J.; Dam, B.; Rector, J. H. et al. Visualization of hydrogen migration in solids using switchable mirrors. Nature 1998, 394, 656–658.CrossRefGoogle Scholar
  32. [32]
    Mehta, B. R.; Aruna, I.; Malhotra, L. K. Rare earth gadolinium nanoparticles for hydrogen induce. In Nano-scale Materials; Sahu, S. N.; Choudhury, R. K.; Jena, P., Eds.; Nova Science Publishers: Hauppauge, N.Y., 2006; pp 25–34.Google Scholar
  33. [33]
    Blanksby, S. J.; Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 2003, 36, 255–263.CrossRefGoogle Scholar
  34. [34]
    Olson, F. E.; Paavilainen, S.; Persson, M.; Repp, J.; Meyer, G. Multiple charge states of Ag atoms on ultrathin NaCl films. Phys. Rev. Lett. 2007, 98, 176803.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rouzhaji Tuerhong
    • 1
  • Shawulienu Kezilebieke
    • 1
  • Bernard Barbara
    • 2
  • Jean-Pierre Bucher
    • 1
  1. 1.Institut Universitaire de FranceUniversité de StrasbourgStrasbourgFrance
  2. 2.Institut Néel, CNRSUniversité Grenoble-AlpesGrenobleFrance
  3. 3.Department of Applied Physics, School of ScienceAalto UniversityAaltoFinland

Personalised recommendations