Nano Research

, Volume 9, Issue 10, pp 3099–3115 | Cite as

Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol

  • Daowei Gao
  • Xin ZhangEmail author
  • Xiaoping Dai
  • Yuchen Qin
  • Aijun DuanEmail author
  • Yanbing Yu
  • Hongying Zhuo
  • Hairui Zhao
  • Pengfang Zhang
  • Yan Jiang
  • Jianmei Li
  • Zhen Zhao
Research Article


A series of novel catalysts consisting of nanosized Au particles confined in micro-mesoporous ZSM-5/SBA-15 (ZSBA) materials with platelet (PL), rod (RD), and hexagonal-prism (HP) morphologies have been synthesized in situ. These catalysts possess both SBA-15 and ZSM-5 structures and exhibit excellent stability of their active sites by confinement of the Au nanoparticles (NPs) within ZSBA. The catalysts have been characterized in depth to understand their structure–property relationships. The gold NP dimensions and the pore structure of the catalysts, which were found to be sensitive to calcination temperature and synthetic conditions, are shown to play vital roles in the reduction of 4-nitrophenol. Au/ZSBA-PL, with short mesochannels (210 nm) and a large pore diameter (6.7 nm), exhibits high catalytic performance in the reduction of 4-nitrophenol, whereas Au/ZSBA-HP and Au/ZSBA-RD, with long mesochannels and relatively smaller pore sizes, show poor catalytic activities. In the case of catalysts with different gold NP sizes, Au/ZSBA-PL-350 with an Au NP diameter of 4.0 nm exhibits the highest reaction rate constant (0.14 min-1) and turnover frequency (0.0341 s-1). In addition, the effect of the reaction parameters on the reduction of 4-nitrophenol has been systematically investigated. A possible mechanism for 4-nitrophenol reduction over the Au/ZSBA catalysts is proposed.


gold catalysis porous material environmental pollution 4-nitrophenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1193_MOESM1_ESM.pdf (3.1 mb)
Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol


  1. [1]
    Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587.CrossRefGoogle Scholar
  2. [2]
    Kovach, I. M.; Enyedy, E. J. Active-site-dependent elimination of 4-nitrophenol from 4-nitrophenyl alkylphosphonyl serine protease adducts. J. Am. Chem. Soc. 1998, 120, 258–263.CrossRefGoogle Scholar
  3. [3]
    Gao, D. W.; Duan, A. J.; Zhang, X.; Chi, K. B.; Zhao, Z.; Li, J. M.; Qin, Y. C.; Wang, X. L.; Xu, C. M. Self-assembly of monodispersed hierarchically porous Beta-SBA-15 with different morphologies and its hydro-upgrading performances for FCC gasoline. J. Mater. Chem. A 2015, 3, 16501–16512.CrossRefGoogle Scholar
  4. [4]
    Gao, D. W.; Duan, A. J.; Zhang, X.; Zhao, Z.; E, H.; Li, J. M.; Wang, H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Appl. Catal. B 2015, 165, 269–284.CrossRefGoogle Scholar
  5. [5]
    Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W.; Li, Y. D. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.CrossRefGoogle Scholar
  6. [6]
    Zhang, J.; Liu, Y.; Lv, J.; Li, G. X. A colorimetric method for a-glucosidase activity assay and its inhibitor screening based on aggregation of gold nanoparticles induced by specific recognition between phenylenediboronic acid and 4-aminophenyl-a-d-glucopyranoside. Nano Res. 2015, 8, 920–930.CrossRefGoogle Scholar
  7. [7]
    Zhang, X.; Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling reactions. Angew. Chem., Int. Ed. 2008, 47, 4358–4361.CrossRefGoogle Scholar
  8. [8]
    Li, Z.-X.; Xue, W.; Guan, B.-T.; Shi, F.-B.; Shi, Z.-J.; Jiang, H.; Yan, C.-H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213–1220.CrossRefGoogle Scholar
  9. [9]
    Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F. Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chem. 2003, 5, 64–67.CrossRefGoogle Scholar
  10. [10]
    Gao, D. W.; Zhang, X.; Yang, Y.; Dai, X. P.; Sun, H.; Qin, Y. C.; Duan, A. J. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols. Nano Res. 2016, 9, 985–995.CrossRefGoogle Scholar
  11. [11]
    Sarkar, S.; Balisetty, L.; Shanbogh, P. P.; Peter, S. C. Effect of ordered and disordered phases of unsupported Ag3In nanoparticles on the catalytic reduction of p-nitrophenol. J. Catal. 2014, 318, 143–150.CrossRefGoogle Scholar
  12. [12]
    Cárdenas-Lizana, F.; Lamey, D.; Perret, N.; Gómez-Quero, S.; Kiwi-Minsker, L.; Keane, M. A. Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal. Commun. 2012, 21, 46–51.CrossRefGoogle Scholar
  13. [13]
    Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.CrossRefGoogle Scholar
  14. [14]
    Chang, Y.-C.; Chen, D.-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664–669.CrossRefGoogle Scholar
  15. [15]
    Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J. Hazard. Mater. 2013, 248–249, 394–400.CrossRefGoogle Scholar
  16. [16]
    Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl. Catal. B 2010, 101, 137–143.CrossRefGoogle Scholar
  17. [17]
    Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 2000, 34, 3474–3479.CrossRefGoogle Scholar
  18. [18]
    Modirshahla, N.; Behnajady, M. A.; Mohammadi-Aghdam, S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater. 2008, 154, 778–786.CrossRefGoogle Scholar
  19. [19]
    Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.CrossRefGoogle Scholar
  20. [20]
    Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415–423.CrossRefGoogle Scholar
  21. [21]
    Xia, Y. Y.; Shi, Z. Q.; Lu, Y. Gold microspheres with hierarchical structure/conducting polymer composite film: Preparation, characterization and application as catalyst. Polymer 2010, 51, 1328–1335.CrossRefGoogle Scholar
  22. [22]
    Zhang, M. M.; Liu, L.; Wu, C. L.; Fu, G. Q.; Zhao, H. Y.; He, B. L. Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 2007, 48, 1989–1997.CrossRefGoogle Scholar
  23. [23]
    Chang, G. H.; Luo, Y. L.; Lu, W. B.; Qin, X. Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ag nanoparticles decorated polyaniline nanofibers: Synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal. Sci. Technol. 2012, 2, 800–806.CrossRefGoogle Scholar
  24. [24]
    Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598–7604.CrossRefGoogle Scholar
  25. [25]
    Wang, P.-P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283–291.CrossRefGoogle Scholar
  26. [26]
    Gao, D. W.; Zheng, A. M.; Zhang, X.; Sun, H.; Dai, X. P.; Yang, Y.; Wang, H.; Qin, Y. C.; Xu, S. T.; Duan, A. J. Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties. Nanoscale 2015, 7, 10918–10924.CrossRefGoogle Scholar
  27. [27]
    Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.CrossRefGoogle Scholar
  28. [28]
    Katiyar, A.; Yadav, S.; Smirniotis, P. G.; Pinto, N. G. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 2006, 1122, 13–20.CrossRefGoogle Scholar
  29. [29]
    Chen, S.-Y.; Tang, C.-Y.; Chuang, W.-T.; Lee, J.-J.; Tsai, Y.-L.; Chan, J. C. C.; Lin, C.-Y.; Liu, Y.-C.; Cheng, S. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mater. 2008, 20, 3906–3916.CrossRefGoogle Scholar
  30. [30]
    Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.CrossRefGoogle Scholar
  31. [31]
    Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.CrossRefGoogle Scholar
  32. [32]
    Yu, Y.; Xiong, G.; Li, C.; Xiao, F.-S. Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Micro. Meso. Mater. 2001, 46, 23–34.CrossRefGoogle Scholar
  33. [33]
    Knops-Gerrits, P.-P.; De Vos, D. E.; Feijen, E. J. P.; Jacobs, P. A. Raman spectroscopy on zeolites. Microporous Mater. 1997, 8, 3–17.CrossRefGoogle Scholar
  34. [34]
    Borodko, Y.; Ager, J. W.; Marti, G. E.; Song, H.; Niesz, K.; Somorjai, G. A. Structure sensitivity of vibrational spectra of mesoporous silica SBA-15 and Pt/SBA-15. J. Phys. Chem. B 2005, 109, 17386–17390.CrossRefGoogle Scholar
  35. [35]
    Jiang, J. L.; Yang, Y.; Duanmu, C.; Xu, Y.; Feng, L. D.; Gu, X.; Chen, J. Preparation of hollow ZSM-5 crystals in the presence of polyacrylamide. Micro. Meso. Mater. 2012, 163, 11–20.CrossRefGoogle Scholar
  36. [36]
    Liu, G. P.; Xiangli, F.; Wei, W.; Liu, S. N.; Jin, W. Q. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem. Eng. J. 2011, 174, 495–503.CrossRefGoogle Scholar
  37. [37]
    Panpa, W.; Jinawath, S. Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Appl. Catal. B 2009, 90, 389–394.CrossRefGoogle Scholar
  38. [38]
    Melero, J. A.; Stucky, G. D.; van Grieken, R.; Morales, G. Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. J. Mater. Chem. 2002, 12, 1664–1670.CrossRefGoogle Scholar
  39. [39]
    Lévy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084.CrossRefGoogle Scholar
  40. [40]
    Ojea-Jiménez, I.; Puntes, V. Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions. J. Am. Chem. Soc. 2009, 131, 13320–13327.CrossRefGoogle Scholar
  41. [41]
    Zhang, T.; Liu, J.; Wang, D. X.; Zhao, Z.; Wei, Y. C.; Cheng, K. Y.; Jiang, G. Y.; Duan, A. J. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Appl. Catal. B 2014, 148–149, 520–531.CrossRefGoogle Scholar
  42. [42]
    Yuan, J.; Huang, X.; Chen, M. X.; Shi, J. W.; Shangguan, W. F. Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal. Today 2013, 201, 182–188.CrossRefGoogle Scholar
  43. [43]
    Zhang, X.; Shi, H.; Xu, B.-Q. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1,3-butadiene hydrogenation. J. Catal. 2011, 279, 75–87.CrossRefGoogle Scholar
  44. [44]
    Wei, Y. C.; Liu, J.; Zhao, Z.; Duan, A. J.; Jiang, G. Y. The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction. J. Catal. 2012, 287, 13–29.CrossRefGoogle Scholar
  45. [45]
    Lin, Y. Y.; Qiao, Y.; Wang, Y. J.; Yan, Y.; Huang, J. B. Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications. J. Mater. Chem. 2012, 22, 18314–18320.CrossRefGoogle Scholar
  46. [46]
    Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111, 4596–4605.CrossRefGoogle Scholar
  47. [47]
    Zhang, H. J.; Li, X. Y.; Chen, G. H. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J. Mater. Chem. 2009, 19, 8223–8231.CrossRefGoogle Scholar
  48. [48]
    Xu, W. L.; Kong, J. S.; Yeh, Y. T. E.; Chen, P. Singlemolecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992–996.CrossRefGoogle Scholar
  49. [49]
    Yang, Y.; Zhang, W.; Zhang, Y.; Zheng, A. M.; Sun, H.; Li, X. S.; Liu, S. Y.; Zhang, P. F.; Zhang, X. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres. Nano Res. 2015, 8, 3404–3411.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daowei Gao
    • 1
  • Xin Zhang
    • 1
    Email author
  • Xiaoping Dai
    • 1
  • Yuchen Qin
    • 1
  • Aijun Duan
    • 1
    Email author
  • Yanbing Yu
    • 1
  • Hongying Zhuo
    • 1
  • Hairui Zhao
    • 1
  • Pengfang Zhang
    • 1
  • Yan Jiang
    • 1
  • Jianmei Li
    • 2
  • Zhen Zhao
    • 2
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  2. 2.College of ScienceChina University of PetroleumBeijingChina

Personalised recommendations