Nano Research

, Volume 9, Issue 10, pp 3018–3026 | Cite as

Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor

  • Giovanna TrevisiEmail author
  • Luca Seravalli
  • Paola Frigeri
Research Article


The room-temperature light emission of uncapped III-V semiconductor quantum dots is used to investigate the properties and evolution of the surface under exposure to a humid environment. Enhanced photoluminescence intensity resulting from exposure to polar molecules has already been reported; here we demonstrate that the external environment also has a relevant effect on the emission energy of quantum dots. Experimental results are interpreted on the basis of a model of the quantum system that takes into account the formation of oxide on pristine III-V surfaces and the presence of surface states. As a result of our study, we can clearly distinguish the effect of surface oxidation from that of surface state passivation on the emission of InAs surface quantum dots. This work sheds new light on the properties of semiconductor surface quantum dots as building blocks of novel and highly efficient sensing devices based on optical transduction.


epitaxial quantum dots surface states oxide photoluminescence quantum modeling optical nanosensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1184_MOESM1_ESM.pdf (933 kb)
Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor


  1. [1]
    Wu, J.; Chen, S. M.; Seeds, A.; Liu, H. Y. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 2015, 48, 363001.CrossRefGoogle Scholar
  2. [2]
    Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400.CrossRefGoogle Scholar
  3. [3]
    Milla, M. J.; Ulloa, J. M.; Guzmán, Á. Strong influence of the humidity on the electrical properties of InGaAs surface quantum dots. ACS Appl. Mater. Interfaces 2014, 6, 6191–6195.CrossRefGoogle Scholar
  4. [4]
    Lin, A.; Liang, B. L.; Dorogan, V. G.; Mazur, Y. I.; Tarasov, G. G.; Salamo, G. J.; Huffaker, D. L. Strong passivation effects on the properties of an InAs surface quantum dot hybrid structure. Nanotechnology 2013, 24, 075701.CrossRefGoogle Scholar
  5. [5]
    Milla, M. J.; Ulloa, J. M.; Guzmán, Á. High optical sensitivity to ambient conditions of uncapped InGaAs surface quantum dots. Appl. Phys. Lett. 2012, 100, 131601.CrossRefGoogle Scholar
  6. [6]
    Milla, M. J.; Ulloa, J. M.; Guzmán, Á. Dependence of surface InGaAs quantum dot luminescence on the molecular properties of the environment. Appl. Phys. Express 2013, 6, 092002.CrossRefGoogle Scholar
  7. [7]
    De Angelis, R.; Casalboni, M.; Hatami, F.; Ugur, A.; Masselink, W. T.; Prosposito, P. Vapour sensing properties of InP quantum dot luminescence. Sensor. Actuat. B-Chem. 2012, 162, 149–152.CrossRefGoogle Scholar
  8. [8]
    Hestroffer, K.; Braun, R.; Ugur, A.; Tomm, J. W.; Hackbarth, S.; Röder, B.; Hatami, F. Surface InP/In0.48Ga0.52P quantum dots: Carrier recombination dynamics and their interaction with fluorescent dyes. J. Appl. Phys. 2013, 114, 163510.CrossRefGoogle Scholar
  9. [9]
    Chen, M. X.; Kobashi, K.; Chen, B.; Lu, M.; Tour, J. M. Functionalized self-assembled InAs/GaAs quantum-dot structures hybridized with organic molecules. Adv. Funct. Mater. 2010, 20, 469–475.CrossRefGoogle Scholar
  10. [10]
    Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B. Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing. Chem. Rev. 2000, 100, 2505–2536.CrossRefGoogle Scholar
  11. [11]
    Frigeri, P.; Seravalli, L.; Trevisi, G.; Franchi, S. Molecular beam epitaxy: An overview. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, 2016.Google Scholar
  12. [12]
    Bernstein, R. W.; Borg, A.; Husby, H.; Fimland, B. O.; Grepstad, J. K. Capping and decapping of MBE grown GaAs(001), Al0.5Ga0.5As(001), and AlAs(001) investigated with ASP, PES, LEED, and RHEED. Appl. Surf. Sci. 1992, 56–58, 58–74.Google Scholar
  13. [13]
    Auf der Maur, M.; Penazzi, G.; Romano, G.; Sacconi, F.; Pecchia, A.; Di Carlo, A. The multiscale paradigm in electronic device simulation. IEEE T. Electron Dev. 2011, 58, 1425–1432.CrossRefGoogle Scholar
  14. [14]
    Barettin, D.; de Angelis, R.; Prosposito, P.; Auf der Maur, M.; Casalboni, M.; Pecchia, A. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results. Nanotechnology 2014, 25, 195201.CrossRefGoogle Scholar
  15. [15]
    Sacconi, F.; Auf der Maur, M.; Di Carlo, A. Optoelectronic properties of nanocolumn InGaN/GaN LEDs. IEEE T. Electron Dev. 2012, 59, 2979–2987.CrossRefGoogle Scholar
  16. [16]
    Seravalli, L.; Bocchi, C.; Trevisi, G.; Frigeri, P. Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 µm: Effects of InGaAs capping. J. Appl. Phys. 2010, 108, 114313.CrossRefGoogle Scholar
  17. [17]
    Seravalli, L.; Gioannini, M.; Cappelluti, F.; Sacconi, F.; Trevisi, G.; Frigeri, P. Broadband light sources based on InAs/InGaAs metamorphic quantum dots. J. Appl. Phys. 2016, 119, 143102.CrossRefGoogle Scholar
  18. [18]
    Seravalli, L.; Trevisi, G.; Frigeri, P. Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures. J. Appl. Phys. 2013, 114, 184309.CrossRefGoogle Scholar
  19. [19]
    Smaali, K.; El Hdiy, A.; Molinari, M.; Troyon, M. Band-gap determination of the native oxide capping quantum dots by use of different kinds of conductive AFM probes: Example of InAs/GaAs quantum dots. IEEE T. Electron Dev. 2010, 57, 1455–1459.CrossRefGoogle Scholar
  20. [20]
    Bierwagen, O. Indium oxide—A transparent, wide-band gap semiconductor for (opto)electronic applications. J. Phys. D: Appl. Phys. 2015, 30, 024001.Google Scholar
  21. [21]
    Nakkar, A.; Folliot, H.; Le Corre, A.; Doré, F.; Alghoraibi, I.; Labbé, C.; Elias, G.; Loualiche, S.; Pistol, M. E.; Caroff, P. et al. Optical properties and morphology of InAs/InP (113)B surface quantum dots. Appl. Phys. Lett. 2008, 92, 231911.CrossRefGoogle Scholar
  22. [22]
    Saito, T.; Schulman, J. N.; Arakawa, Y. Strain-energy distribution and electronic structure of InAs pyramidal quantum dots with uncovered surfaces: Tight-binding analysis. Phys. Rev. B 1998, 57, 13016–13019.CrossRefGoogle Scholar
  23. [23]
    Walther, C.; Blum, R. P.; Niehus, H.; Masselink, W. T.; Thamm, A. Modification of the Fermi-level pinning of GaAs surfaces through InAs quantum dots. Phys. Rev. B 1999, 60, R13962–R13965.CrossRefGoogle Scholar
  24. [24]
    Halpern, E.; Cohen, G.; Gross, S.; Henning, A.; Matok, M.; Kretinin, A. V.; Shtrikman, H.; Rosenwaks, Y. Measuring surface state density and energy distribution in InAs nanowires. Phys. Status Solidi A 2014, 211, 473–482.CrossRefGoogle Scholar
  25. [25]
    De Angelis, R.; D’Amico, L.; Casalboni, M.; Hatami, F.; Masselink, W. T.; Prosposito, P. Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage. Sensor. Actuat. B-Chem. 2013, 189, 113–117.CrossRefGoogle Scholar
  26. [26]
    Zhang, X. Q.; Ptasinska, S. Dissociative adsorption of water on an H2O/GaAs(100) interface: In situ near-ambient pressure XPS studies. J Phys Chem C 2014, 118, 4259–4266.CrossRefGoogle Scholar
  27. [27]
    Losurdo, M.; Wu, P. C.; Kim, T.-H.; Bruno, G.; Brown, A. S. Cysteamine-based functionalization of InAs surfaces: Revealing the critical role of oxide interactions in biasing attachment. Langmuir 2012, 28, 1235–1245.CrossRefGoogle Scholar
  28. [28]
    Shiramine, K.-I.; Muto, S.; Shibayama, T.; Sakaguchi, N.; Ichinose, H.; Kozaki, T.; Sato, S.; Nakata, Y.; Yokoyama, N.; Taniwaki, M. Tip artifact in atomic force microscopy observations of InAs quantum dots grown in Stranski–Krastanow mode. Appl. Phys. Lett. 2007, 101, 033527.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giovanna Trevisi
    • 1
    Email author
  • Luca Seravalli
    • 1
  • Paola Frigeri
    • 1
  1. 1.CNR-IMEM InstituteParmaItaly

Personalised recommendations