Nano Research

, Volume 9, Issue 10, pp 2875–2888 | Cite as

Hierarchically porous carbon foams for electric double layer capacitors

  • Feng Zhang
  • Tianyu Liu
  • Guihua Hou
  • Tianyi Kou
  • Lu Yue
  • Rongfeng Guan
  • Yat Li
Research Article


The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehydecross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer–Emmett–Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100 A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.


hierarchically porous structure glutaraldehyde-crosslinked chitosan light weight carbon foam electrical double layer capacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1173_MOESM1_ESM.pdf (3.4 mb)
Hierarchically porous carbon foams for electric double layer capacitors


  1. [1]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  2. [2]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, DOI: 10.1126/science.1246501.Google Scholar
  3. [3]
    Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189–3194.CrossRefGoogle Scholar
  4. [4]
    Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal threedimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440–2445.CrossRefGoogle Scholar
  5. [5]
    Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.CrossRefGoogle Scholar
  6. [6]
    Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled threedimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.CrossRefGoogle Scholar
  7. [7]
    Ruiz, V.; Blanco, C.; Santamaría, R.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Rodríguez- Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195–200.CrossRefGoogle Scholar
  8. [8]
    Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem.—Eur. J. 2015, 21, 6157–6164.CrossRefGoogle Scholar
  9. [9]
    Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66–74.CrossRefGoogle Scholar
  10. [10]
    Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing singlewalled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440–1446.CrossRefGoogle Scholar
  11. [11]
    Sun, Y. M.; Sills, R. B.; Hu, X. L.; Seh, Z. W.; Xiao, X.; Xu, H. H.; Luo, W.; Jin, H. Y.; Xin, Y.; Li, T. Q. et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 2015, 15, 3899–3906.CrossRefGoogle Scholar
  12. [12]
    Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.Google Scholar
  13. [13]
    Chen, Z.; Wen, J.; Yan, C. Z.; Rice, L.; Sohn, H.; Shen, M. Q.; Cai, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 2011, 1, 551–556.CrossRefGoogle Scholar
  14. [14]
    Dutta, S.; Bhaumik, A.; Wu, K. C.-W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.CrossRefGoogle Scholar
  15. [15]
    Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.CrossRefGoogle Scholar
  16. [16]
    Zhang, L. L.; Gu, Y.; Zhao, X. S. Advanced porous carbon electrodes for electrochemical capacitors. J. Mater. Chem. A 2013, 1, 9395–9408.CrossRefGoogle Scholar
  17. [17]
    Xu, Y. X.; Chen, C.-Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.CrossRefGoogle Scholar
  18. [18]
    Hao, P.; Zhao, Z. H.; Tian, J.; Li, H. D.; Sang, Y. H.; Yu, G. W.; Cai, H. Q.; Liu, H.; Wong, C. P.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129.CrossRefGoogle Scholar
  19. [19]
    White, R. J.; Budarin, V.; Luque, R.; Clark, J. H.; Macquarrie, D. J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401–3418.CrossRefGoogle Scholar
  20. [20]
    White, R. J.; Brun, N.; Budarin, V. L.; Clark, J. H.; Titirici, M.-M. Always look on the “Light” side of life: Sustainable carbon aerogels. ChemSusChem 2014, 7, 670–689.CrossRefGoogle Scholar
  21. [21]
    Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J. M.; Garcí a, H. From biomass wastes to large-area, high-quality, N-doped graphene: Catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 2012, 48, 9254–9256.CrossRefGoogle Scholar
  22. [22]
    Hao, P.; Zhao, Z. H.; Leng, Y. H.; Tian, J.; Sang, Y. H.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Graphenebased nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 2015, 15, 9–23.CrossRefGoogle Scholar
  23. [23]
    Latorre-Sánchez, M.; Primo, A.; Atienzar, P.; Forneli, A.; García, H. p-n heterojunction of doped graphene films obtained by pyrolysis of biomass precursors. Small 2015, 11, 970–975.CrossRefGoogle Scholar
  24. [24]
    Primo, A.; Sánchez, E.; Delgado, J. M.; García, H. Highyield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 2014, 68, 777–783.CrossRefGoogle Scholar
  25. [25]
    Kucinska, A.; Cyganiuk, A.; Lukaszewicz, J. P. A microporous and high surface area active carbon obtained by the heattreatment of chitosan. Carbon 2012, 50, 3098–3101.CrossRefGoogle Scholar
  26. [26]
    Olejniczak, A.; Lezanska, M.; Wloch, J.; Kucinska, A.; Lukaszewicz, J. P. Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 2013, 1, 8961–8967.CrossRefGoogle Scholar
  27. [27]
    Zhao, Q. L.; Wang, X. Y.; Liu, J.; Wang, H.; Zhang, Y. W.; Gao, J.; Lu, Q.; Zhou, H. Y. Design and synthesis of threedimensional hierarchical ordered porous carbons for supercapacitors. Electrochim. Acta 2015, 154, 110–118.CrossRefGoogle Scholar
  28. [28]
    Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous n-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.CrossRefGoogle Scholar
  29. [29]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  30. [30]
    Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795.CrossRefGoogle Scholar
  31. [31]
    He, P. G.; Liu, L.; Song, W. X.; Xiong, G. P.; Fisher, T. S.; Chen, T. F. Large-scale synthesis and activation of polygonal carbon nanofibers with thin ribbon-like structures for supercapacitor electrodes. RSC Adv. 2015, 5, 31837–31844.CrossRefGoogle Scholar
  32. [32]
    Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.CrossRefGoogle Scholar
  33. [33]
    Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027.CrossRefGoogle Scholar
  34. [34]
    Kim, S. J.; Hwang, S. W.; Hyun, S. H. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 2005, 40, 725–731.CrossRefGoogle Scholar
  35. [35]
    Song, W.-L.; Guan, X.-T.; Fan, L.-Z.; Cao, W.-Q.; Wang, C.-Y.; Cao, M.-S. Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 2015, 93, 151–160.CrossRefGoogle Scholar
  36. [36]
    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.CrossRefGoogle Scholar
  37. [37]
    Qie, L.; Chen, W. M.; Xu, H. H.; Xiong, X. Q.; Jiang, Y.; Zou, F.; Hu, X. L.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2497–2504.CrossRefGoogle Scholar
  38. [38]
    Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527–536.CrossRefGoogle Scholar
  39. [39]
    Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.CrossRefGoogle Scholar
  40. [40]
    Ling, Z.; Yu, C.; Fan, X. M.; Liu, S. H.; Yang, J.; Zhang, M. D.; Wang, G.; Xiao, N.; Qiu, J. S. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 2015, 26, 374003.CrossRefGoogle Scholar
  41. [41]
    Xu, J. D.; Gao, Q. M.; Zhang, Y. L.; Tan, Y. L.; Tian, W. Q.; Zhu, L. H.; Jiang, L. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci. Rep. 2014, 4, 5545.Google Scholar
  42. [42]
    Horikawa, T.; Hayashi, J. I.; Muroyama, K. Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 2004, 42, 169–175.CrossRefGoogle Scholar
  43. [43]
    Liu, R. L.; Wan, L.; Liu, S. Q.; Pan, L. X.; Wu, D. Q.; Zhao, D. Y. An interface-induced Co-assembly approach towards ordered mesoporous carbon/graphene aerogel for highperformance supercapacitors. Adv. Funct. Mater. 2015, 25, 526–533.CrossRefGoogle Scholar
  44. [44]
    Ghosh, A.; Lee, Y. H. Carbon-based electrochemical capacitors. ChemSusChem 2012, 5, 480–499.CrossRefGoogle Scholar
  45. [45]
    Song, Y.; Feng, D. Y.; Liu, T. Y.; Li, Y.; Liu, X. X. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 2015, 7, 3581–3587.CrossRefGoogle Scholar
  46. [46]
    Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.CrossRefGoogle Scholar
  47. [47]
    Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.CrossRefGoogle Scholar
  48. [48]
    Bo, Z.; Zhu, W. G.; Ma, W.; Wen, Z. H.; Shuai, X. R.; Chen, J. H.; Yan, J. H.; Wang, Z. H.; Cen, K. F.; Feng, X. L. Vertically oriented graphene bridging active-layer/currentcollector interface for ultrahigh rate supercapacitors. Adv. Mater. 2013, 25, 5799–5806.CrossRefGoogle Scholar
  49. [49]
    Li, J.; Wang, X. Y.; Huang, Q. H.; Gamboa, S.; Sebastian, P. J. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158, 784–788.CrossRefGoogle Scholar
  50. [50]
    Yu, Z. N.; McInnis, M.; Calderon, J.; Seal, S.; Zhai, L.; Thomas, J. Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 2015, 11, 611–620.CrossRefGoogle Scholar
  51. [51]
    Wu, Z.-S.; Sun, Y.; Tan, Y.-Z.; Yang, S. B.; Feng, X. L.; Mü llen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532–19535.CrossRefGoogle Scholar
  52. [52]
    Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y. Y.; Zheng, G. F.; Zhao, D. Y. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156.CrossRefGoogle Scholar
  53. [53]
    Chen, H. Y.; Di, J. T.; Jin, Y.; Chen, M. H.; Tian, J.; Li, Q. W. Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors. J. Power Sources 2013, 237, 325–331.CrossRefGoogle Scholar
  54. [54]
    Li, Z. H.; Wu, D. C.; Liang, Y. R.; Fu, R. W.; Matyjaszewski, K. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J. Am. Chem. Soc. 2014, 136, 4805–4808.CrossRefGoogle Scholar
  55. [55]
    Ma, Z. H.; Zhao, X. W.; Gong, C. H.; Zhang, J. W.; Zhang, J. W.; Gu, X. F.; Tong, L.; Zhou, J. F.; Zhang, Z. J. Preparation of a graphene-based composite aerogel and the effects of carbon nanotubes on preserving the porous structure of the aerogel and improving its capacitor performance. J. Mater. Chem. A 2015, 3, 13445–13452.CrossRefGoogle Scholar
  56. [56]
    Sui, Z.-Y.; Meng, Y.-N.; Xiao, P.-W.; Zhao, Z.-Q.; Wei, Z.-X.; Han, B.-H. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces 2015, 7, 1431–1438.CrossRefGoogle Scholar
  57. [57]
    Song, W.-L.; Song, K.; Fan, L.-Z. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4257–4264.CrossRefGoogle Scholar
  58. [58]
    Pröbstle, H.; Wiener, M.; Fricke, J. Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 2003, 10, 213–222.CrossRefGoogle Scholar
  59. [59]
    Liu, M.-C.; Kong, L.-B.; Zhang, P.; Luo, Y.-C.; Kang, L. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 2012, 60, 443–448.CrossRefGoogle Scholar
  60. [60]
    Liu, M.-C.; Kong, L.-B.; Lu, C.; Li, X.-M.; Luo, Y.-C.; Kang, L. Waste paper based activated carbon monolith as electrode materials for high performance electric doublelayer capacitors. RSC Adv. 2012, 2, 1890–1896.CrossRefGoogle Scholar
  61. [61]
    Liu, T. Y.; Ling, Y. C.; Yang, Y.; Finn, L.; Collazo, E.; Zhai, T.; Tong, Y. X.; Li, Y. Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 2015, 12, 169–177.CrossRefGoogle Scholar
  62. [62]
    Weng, Z.; Su, Y.; Wang, D.-W.; Li, F.; Du, J. H.; Cheng, H.-M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917–922.CrossRefGoogle Scholar
  63. [63]
    Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Harfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317–328.CrossRefGoogle Scholar
  64. [64]
    Zhai, T.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Wang, G. M.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. A new benchmark capacitance for supercapacitor anodes by mixedvalence sulfur-doped V6O13-x. Adv. Mater. 2014, 26, 5869–5875.CrossRefGoogle Scholar
  65. [65]
    Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45, 2511–2518.CrossRefGoogle Scholar
  66. [66]
    Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.CrossRefGoogle Scholar
  67. [67]
    Qu, D. Y.; Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 1998, 74, 99–107.CrossRefGoogle Scholar
  68. [68]
    Zhao, Z. H.; Hao, S. M.; Hao, P.; Sang, Y. H.; Manivannan, A.; Wu, N. Q.; Liu, H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 2015, 3, 15049–15056.CrossRefGoogle Scholar
  69. [69]
    Zheng, H. M.; Zhai, T.; Yu, M. H.; Xie, S. L.; Liang, C. L.; Zhao, W. X.; Wang, S. C. I.; Zhang, Z. S.; Lu, X. H. TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors. J. Mater. Chem. C 2013, 1, 225–229.CrossRefGoogle Scholar
  70. [70]
    Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.CrossRefGoogle Scholar
  71. [71]
    Lu, X. H.; Wang, G. M.; Zhai, T.; Yu, M. H.; Xie, S. L.; Ling, Y. C.; Liang, C. L.; Tong, Y. X.; Li, Y. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 2012, 12, 5376–5381.CrossRefGoogle Scholar
  72. [72]
    Choi, B. G.; Chang, S.-J.; Kang, H.-W.; Park, C. P.; Kim, H. J.; Hong, W. H.; Lee, S.; Huh, Y. S. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 2012, 4, 4983–4988.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Feng Zhang
    • 1
    • 2
  • Tianyu Liu
    • 2
  • Guihua Hou
    • 1
  • Tianyi Kou
    • 2
  • Lu Yue
    • 1
  • Rongfeng Guan
    • 1
  • Yat Li
    • 1
  1. 1.Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu ProvinceYancheng Institute of TechnologyYanchengChina
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations