Nano Research

, Volume 9, Issue 8, pp 2458–2466 | Cite as

Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination

Research Article

Abstract

Capacitive deionization is an attractive approach to water desalination and treatment. To achieve efficient capacitative desalination, rationally designed electrodes with high specific capacitances, conductivities, and stabilities are necessary. Here we report the construction of a three-dimensional (3D) holey graphene hydrogel (HGH). This material contains abundant in-plane pores, offering efficient ion transport pathways. Furthermore, it forms a highly interconnected network of graphene sheets, providing efficient electron transport pathways, and its 3D hierarchical porous structure can provide a large specific surface area for the adsorption and storage of ions. Consequently, HGH serves as a binder-free electrode material with excellent electrical conductivity. Cyclic voltammetry (CV) measurements indicate that the optimized HGH can achieve specific capacitances of 358.4 F·g−1 in 6 M KOH solution and 148 F·g−1 in 0.5 M NaCl solution. Because of these high capacitances, HGH has a desalination capacity as high as 26.8 mg·g−1 (applied potential: 1.2 V; initial NaCl concentration: ~5,000 mg·L−1).

Keywords

capacitive deionization desalination electrochemical capacitor graphene hydrogel (GH) in-plane pore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1132_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1487 KB.

References

  1. [1]
    Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.CrossRefGoogle Scholar
  2. [2]
    Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.CrossRefGoogle Scholar
  3. [3]
    Gabitto, J.; Tsouris, C. Volume averaging study of the capacitive deionization process in homogeneous porous media. Transport Porous Med. 2015, 109, 61–80.CrossRefGoogle Scholar
  4. [4]
    Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.CrossRefGoogle Scholar
  5. [5]
    Wang, C. M.; Song, H. O.; Zhang, Q. X.; Wang, B. X.; Li, A. M. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination 2015, 365, 407–415.CrossRefGoogle Scholar
  6. [6]
    Yeh, C. L.; Hsi, H. C.; Li, K. C.; Hou, C. H. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 2015, 367, 60–68.CrossRefGoogle Scholar
  7. [7]
    Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42, 8193–8201.CrossRefGoogle Scholar
  8. [8]
    El-Deen, A. G.; Barakat, N. A. M.; Kim, H. Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 2014, 344, 289–298.CrossRefGoogle Scholar
  9. [9]
    Biesheuvel, P. M.; Porada, S.; Levi, M.; Bazant, M. Z. Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electr. 2014, 18, 1365–1376.CrossRefGoogle Scholar
  10. [10]
    Laxman, K.; Myint, M. T. Z.; Khan, R.; Pervez, T.; Dutta, J. Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination 2015, 359, 64–70.CrossRefGoogle Scholar
  11. [11]
    Huang, Z. H.; Wang, M.; Wang, L.; Kang, F. Y. Relation between the charge efficiency of activated carbon fiber and its desalination performance. Langmuir 2012, 28, 5079–5084.CrossRefGoogle Scholar
  12. [12]
    Choi, J. H. Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep. Purif. Technol. 2010, 70, 362–366.CrossRefGoogle Scholar
  13. [13]
    Jung, H. H.; Hwang, S. W.; Hyun, S. H.; Lee, K. H.; Kim, G. T. Capacitive deionization characteristics of nano-structured carbon aerogel electrodes synthesized via ambient drying. Desalination 2007, 216, 377–385.CrossRefGoogle Scholar
  14. [14]
    El-Deen, A. G.; Barakat, N. A. M.; Khalil, K. A.; Kim, H. Y. Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J. Chem. 2014, 38, 198–205.CrossRefGoogle Scholar
  15. [15]
    Ying, T. Y.; Yang, K. L.; Yiacoumi, S.; Tsouris, C. Electrosorption of ions from aqueous solutions by nano-structured carbon aerogel. J. Colloid Interface Sci. 2002, 250, 18–27.CrossRefGoogle Scholar
  16. [16]
    Hou, C. H.; Liu, N. L.; Hsu, H. L.; Den, W. Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization. Sep. Purif. Technol. 2014, 130, 7–14.CrossRefGoogle Scholar
  17. [17]
    Zou, L. D.; Li, L. X.; Song, H. H.; Morris, G. Using mesoporous carbon electrodes for brackish water desalination. Water Res. 2008, 42, 2340–2348.CrossRefGoogle Scholar
  18. [18]
    Tsai, Y. C.; Doong, R. A. Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application. Synth. Met. 2015, 205, 48–57.CrossRefGoogle Scholar
  19. [19]
    Nie, C. Y.; Pan, L. K.; Liu, Y.; Li, H. B.; Chen, T. Q.; Lu, T.; Sun, Z. Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization. Electrochim. Acta 2012, 66, 106–109.CrossRefGoogle Scholar
  20. [20]
    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.CrossRefGoogle Scholar
  21. [21]
    Li, H. B.; Zou, L. D.; Pan, L. K.; Sun, Z. Novel graphenelike electrodes for capacitive deionization. Environ. Sci. Technol. 2010, 44, 8692–8697.CrossRefGoogle Scholar
  22. [22]
    Li, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046–7117.CrossRefGoogle Scholar
  23. [23]
    Li, H. B.; Lu, T.; Pan, L. K.; Zhang, Y. P.; Sun, Z. Electrosorption behavior of graphene in NaCl solutions. J. Mater. Chem. 2009, 19, 6773–6779.CrossRefGoogle Scholar
  24. [24]
    Li, H. B.; Pan, L. K.; Lu, T.; Zhan, Y. K.; Nie, C. Y.; Sun, Z. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem. 2011, 653, 40–44.CrossRefGoogle Scholar
  25. [25]
    Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang, L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270–6276.CrossRefGoogle Scholar
  26. [26]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  27. [27]
    Wang, H.; Zhang, D. S.; Yan, T. T.; Wen, X. R.; Zhang, J. P.; Shi, L. Y.; Zhong, Q. D. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J. Mater. Chem. A 2013, 1, 11778–11789.CrossRefGoogle Scholar
  28. [28]
    Wen, X. R.; Zhang, D. S.; Yan, T. T.; Zhang, J. P.; Shi, L. Y. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J. Mater. Chem. A 2013, 1, 12334–12344.CrossRefGoogle Scholar
  29. [29]
    Xu, X. T.; Pan, L. K.; Liu, Y.; Lu, T.; Sun, Z.; Chua, D. H. C. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci. Rep. 2015, 5, 8458.CrossRefGoogle Scholar
  30. [30]
    Xu, X. T.; Sun, Z.; Chua, D. H. C.; Pan, L. K. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci. Rep. 2015, 5, 11225.CrossRefGoogle Scholar
  31. [31]
    Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.Google Scholar
  32. [32]
    Liu, Y.; Zhang, Y.; Ma, G. H.; Wang, Z.; Liu, K. Y.; Liu, H. T. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim. Acta 2013, 88, 519–525.CrossRefGoogle Scholar
  33. [33]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  34. [34]
    Xu, Y. X.; Chen, C. Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.CrossRefGoogle Scholar
  35. [35]
    Yan, J.; Wei, T.; Shao, B.; Ma, F. Q.; Fan, Z. J.; Zhang, M. L.; Zheng, C.; Shang, Y. C.; Qian, W. Z.; Wei, F. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 2010, 48, 1731–1737.CrossRefGoogle Scholar
  36. [36]
    Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838.CrossRefGoogle Scholar
  37. [37]
    Brun, N.; Prabaharan, S. R. S.; Surcin, C.; Morcrette, M.; Deleuze, H.; Birot, M.; Babot, O.; Achard, M. F.; Backov, R. Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes. J. Phys. Chem. C 2012, 116, 1408–1421.CrossRefGoogle Scholar
  38. [38]
    Zhang, D. S.; Yan, T. T.; Shi, L. Y.; Peng, Z.; Wen, X. R.; Zhang, J. P. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem. 2012, 22, 14696–14704.CrossRefGoogle Scholar
  39. [39]
    Gao, P.; Martin, C. R. Voltage charging enhances ionic conductivity in gold nanotube membranes. ACS Nano 2014, 8, 8266–8272.CrossRefGoogle Scholar
  40. [40]
    Wimalasiri, Y.; Mossad, M.; Zou, L. D. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination 2015, 357, 178–188.CrossRefGoogle Scholar
  41. [41]
    Shi, W. H.; Li, H. B.; Cao, X. H.; Leong, Z. Y.; Zhang, J.; Chen, T. P.; Zhang, H.; Yang, H. Y. Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Sci. Rep. 2016, 6, 18966.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Chemo/Biosensing and Chemometrics Department of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations