Nano Research

, Volume 9, Issue 7, pp 1956–1968 | Cite as

Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway

  • Anjana Sarkar
  • Eduardo Gracia-Espino
  • Thomas Wågberg
  • Andrey Shchukarev
  • Melinda Mohl
  • Anne-Riikka Rautio
  • Olli Pitkänen
  • Tiva Sharifi
  • Krisztian Kordas
  • Jyri-Pekka Mikkola
Research Article


Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ∼90 ppmg−1·h−1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.


TiO2 photocatalysis CdSe quantum dots CO2 photoreduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1087_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 2.60 MB.


  1. [1]
    Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005.Google Scholar
  2. [2]
    European Parliament Legislative Resolution of 17 December 2008 on the Proposal for a Directive of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Source (COM(2008)0019-C6-0046/ 2008-2008/0016(COD)); European parliament: Strasbourg, France, 2008.Google Scholar
  3. [3]
    Yuan, L.; Xu, Y.-J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.CrossRefGoogle Scholar
  4. [4]
    Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.CrossRefGoogle Scholar
  5. [5]
    Liu, G. H.; Hoivik, N.; Wang, K. Y.; Jakobsen, H. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 2012, 105, 53–68.CrossRefGoogle Scholar
  6. [6]
    Wang, C. J.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53.CrossRefGoogle Scholar
  7. [7]
    Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.CrossRefGoogle Scholar
  8. [8]
    Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.CrossRefGoogle Scholar
  9. [9]
    Kwak, B. S.; Kang, M. Photocatalytic reduction of CO2 with H2O using perovskite CaxTiyO3. Appl. Surf. Sci. 2015, 337, 138–144.CrossRefGoogle Scholar
  10. [10]
    Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.CrossRefGoogle Scholar
  11. [11]
    Ashley, M.; Magiera, C.; Ramidi, P.; Blackburn, G.; Scott, T. G.; Gupta, R.; Wilson, K.; Ghosh, A.; Biswas, A. Nanomaterials and processes for carbon capture and conversion into useful by-products for a sustainable energy future. Greenh. Gases: Sci. Technol. 2012, 2, 419–444.CrossRefGoogle Scholar
  12. [12]
    Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.CrossRefGoogle Scholar
  13. [13]
    Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.CrossRefGoogle Scholar
  14. [14]
    Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.CrossRefGoogle Scholar
  15. [15]
    Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 45, 221–227.CrossRefGoogle Scholar
  16. [16]
    Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.CrossRefGoogle Scholar
  17. [17]
    Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun. 2004, 1234–1235.Google Scholar
  18. [18]
    Tseng, I. H.; Chang, W.-C.; Wu, J. C. S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B: Environ. 2002, 37, 37–48.CrossRefGoogle Scholar
  19. [19]
    Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91, 1765–1774.CrossRefGoogle Scholar
  20. [20]
    Dey, G. R.; Belapurkar, A. D.; Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J. Photochem. Photobiol. A: Chem. 2004, 163, 503–508.CrossRefGoogle Scholar
  21. [21]
    Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A: Gen. 2003, 249, 11–18.CrossRefGoogle Scholar
  22. [22]
    Guan, G. Q.; Kida, T.; Yoshida, A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B: Environ. 2003, 41, 387–396.CrossRefGoogle Scholar
  23. [23]
    Yahaya, A. H.; Gondal, M. A.; Hameed, A. Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 2004, 400, 206–212.CrossRefGoogle Scholar
  24. [24]
    Chen, H.-C.; Chou, H.-C.; Wu, J. C. S.; Lin, H.-Y. Sol–gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 2008, 23, 1364–1370.CrossRefGoogle Scholar
  25. [25]
    Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl. Catal. B: Environ. 2007, 71, 291–297.CrossRefGoogle Scholar
  26. [26]
    Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized CO2 reduction over pure and platinized TiO2. Top. Catal. 2007, 44, 523–528.CrossRefGoogle Scholar
  27. [27]
    Nguyen, T.-V.; Wu, J. C. S.; Chiou, C.-H. Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal. Commun. 2008, 9, 2073–2076.CrossRefGoogle Scholar
  28. [28]
    Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem. 2005, 7, 667–670.CrossRefGoogle Scholar
  29. [29]
    Sasirekha, N.; Basha, S. J. S; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B: Environ. 2006, 62, 169–180.CrossRefGoogle Scholar
  30. [30]
    Zhao, Z. H.; Fan, J. M.; Wang, Z. Z. Photocatalytic CO2 reduction using sol–gel derived titania-supported zincphthalocyanine. J. Clean. Prod. 2007, 15, 1894–1897.CrossRefGoogle Scholar
  31. [31]
    Sarkar, A.; Shchukarev, A.; Leino, A.-R.; Kordas, K.; Mikkola, J.-P.; Petrov, P. O.; Tuchina, E. S.; Popov, A. P.; Darvin, M. E.; Meinke, M. C. et al. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres. Nanotechnology 2012, 23, 475711.CrossRefGoogle Scholar
  32. [32]
    Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide Co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.CrossRefGoogle Scholar
  33. [33]
    Liu, Y.; Zhou, S.; Li, J. M.; Wang, Y. J.; Jiang, G. Y.; Zhao, Z.; Liu, B.; Gong, X. Q.; Duan, A. J.; Liu, J. et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B: Environ. 2015, 168–169, 125–131.CrossRefGoogle Scholar
  34. [34]
    Li, Q. Y.; Zong, L. L.; Li, C.; Yang, J. J. Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458–463.CrossRefGoogle Scholar
  35. [35]
    Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211–20216.CrossRefGoogle Scholar
  36. [36]
    Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.CrossRefGoogle Scholar
  37. [37]
    Yang, C. Y.; Wang, W. D.; Shan, Z. C.; Huang, F. Q. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2. J. Solid State Chem. 2009, 182, 807–812.CrossRefGoogle Scholar
  38. [38]
    Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.CrossRefGoogle Scholar
  39. [39]
    Zhang, Q.-H.; Han, W.-D.; Hong, Y.-J.; Yu, J.-G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340.CrossRefGoogle Scholar
  40. [40]
    Koci, K.; Mateju, K.; Obalová, L.; Krejcíková, S.; Lacný, Z.; Plachá, D.; Capek, L.; Hospodková, A.; Šolcová, O. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2010, 96, 239–244.CrossRefGoogle Scholar
  41. [41]
    Li, X. K.; Zhuang, Z. J.; Li, W.; Pan, H. Q. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: Gen. 2012, 429–430, 31–38.CrossRefGoogle Scholar
  42. [42]
    Liu, L. J.; Li, Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual. Res. 2014, 14, 453–469.Google Scholar
  43. [43]
    Meng, X. Q.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.CrossRefGoogle Scholar
  44. [44]
    Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J. L.; Zhang, X. W. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci. 2013, 277, 105–110.CrossRefGoogle Scholar
  45. [45]
    Roy, S.; Hegde, M. S.; Ravishankar, N.; Madras, G. Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J. Phys. Chem. C 2007, 111, 8153–8160.CrossRefGoogle Scholar
  46. [46]
    Galian, R. E.; De la Guardia, M.; Pérez-Prieto, J. Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 2011, 27, 1942–1945.CrossRefGoogle Scholar
  47. [47]
    Trinh, T. T.; Mott, D.; Thanh, N. T. K.; Maenosono, S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv. 2011, 1, 100–108.CrossRefGoogle Scholar
  48. [48]
    Yasuo, I. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.CrossRefGoogle Scholar
  49. [49]
    Wu, M.-C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res. 2011, 4, 360–369.CrossRefGoogle Scholar
  50. [50]
    Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.CrossRefGoogle Scholar
  51. [51]
    Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.CrossRefGoogle Scholar
  52. [52]
    Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.CrossRefGoogle Scholar
  53. [53]
    Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.CrossRefGoogle Scholar
  54. [54]
    Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. J. Chem. Phys. 2011, 135, 124701.CrossRefGoogle Scholar
  55. [55]
    He, H. Y.; Zapol, P.; Curtiss, L. A. A theoretical study of CO2 anions on anatase (101) surface. J. Phys. Chem. C 2010, 114, 21474–21481.CrossRefGoogle Scholar
  56. [56]
    Valdés, Á.; Qu, Z.-W.; Kroes, G.-J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.CrossRefGoogle Scholar
  57. [57]
    Chen, H. H.; Park, H. Millis, A. J.; Marianetti, C. A. Charge transfer across transition-metal oxide interfaces: Emergent conductance and electronic structure. Phys. Rev. B 2014, 90, 245138.CrossRefGoogle Scholar
  58. [58]
    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.CrossRefGoogle Scholar
  59. [59]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  60. [60]
    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.CrossRefGoogle Scholar
  61. [61]
    Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.CrossRefGoogle Scholar
  62. [62]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  63. [63]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and opensource software project for quantum simulations of materials. J. Phys.: Condens. Mat. 2009, 21, 395502.Google Scholar
  64. [64]
    Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Cryst. B 1991, 47, 462–468.CrossRefGoogle Scholar
  65. [65]
    Swope, R. J.; Smyth, J. R.; Larson, A. C. H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Amer. Mineral. 1995, 80, 448–453.Google Scholar
  66. [66]
    Landmann, M.; Rauls, E.; Schmidt, W. G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Mat. 2012, 24, 195503.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anjana Sarkar
    • 1
  • Eduardo Gracia-Espino
    • 2
  • Thomas Wågberg
    • 2
  • Andrey Shchukarev
    • 1
  • Melinda Mohl
    • 3
  • Anne-Riikka Rautio
    • 3
  • Olli Pitkänen
    • 3
  • Tiva Sharifi
    • 2
  • Krisztian Kordas
    • 3
  • Jyri-Pekka Mikkola
    • 1
    • 4
  1. 1.Technical Chemistry, Department of Chemistry, Chemical-Biological CentreUmeå UniversityUmeåSweden
  2. 2.Department of PhysicsUmeå UniversityUmeåSweden
  3. 3.Microelectronics and Materials Physics Laboratories, Department of Electrical EngineeringUniversity of OuluOuluFinland
  4. 4.Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityÅbo-TurkuFinland

Personalised recommendations