Nano Research

, Volume 9, Issue 6, pp 1689–1700 | Cite as

Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide

  • Yun-Xiang PanEmail author
  • Zheng-Qing Sun
  • Huai-Ping Cong
  • Yu-Long Men
  • Sen Xin
  • Jie SongEmail author
  • Shu-Hong YuEmail author
Research Article


Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (V o) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an V o influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on V o-rich gallium oxide coated with Pt nanoparticles (V o-rich Pt/Ga2O3), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0 μmol·h−1) compared to those on V o-poor Pt/Ga2O3 (3.9 μmol·h−1) and Pt/TiO2(P25) (6.7 μmol·h−1). We demonstrate that the V o leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga2O3, thus enhancing the photocatalytic activity of Pt/Ga2O3. Rational fabrication of an V o is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.


photocatalytic CO2 reduction oxygen vacancy metal-oxide-based catalyst CO2 adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1063_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1596 KB.


  1. [1]
    Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.Google Scholar
  2. [2]
    Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 111–2119.CrossRefGoogle Scholar
  3. [3]
    Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 372–7408.CrossRefGoogle Scholar
  4. [4]
    Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P. Photocatalysis deconstructed: Design of a new selective catalyst for artificial photosynthesis. Nano Lett. 2014, 14, 97–603.Google Scholar
  5. [5]
    Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 607–4626.CrossRefGoogle Scholar
  6. [6]
    Yuan, L.; Xu, Y.-J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 54–167.CrossRefGoogle Scholar
  7. [7]
    Liu, S. Q.; Tang, Z.-R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y.-J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 053–5075.Google Scholar
  8. [8]
    Zhang, N.; Yang, M.-Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y.-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 0307–10377.Google Scholar
  9. [9]
    Pan, X. Y.; Yang, M.-Q.; Fu, X. Z.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 601–3614.Google Scholar
  10. [10]
    Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 21–831.Google Scholar
  11. [11]
    Zhao, Y. F.; Chen, G. B.; Tong, B.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 824–7831.Google Scholar
  12. [12]
    Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.Google Scholar
  13. [13]
    Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201501974.Google Scholar
  14. [14]
    Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B: Environ. 2015, 179, 60–170.CrossRefGoogle Scholar
  15. [15]
    Lin, J. L.; Pan, Z. M.; Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable Chem. Eng. 2014, 2, 53–358.Google Scholar
  16. [16]
    Núñez, J.; de la Peña O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P. Effect of copper on the performance of ZnO and ZnO1-xNx oxides as CO2 photoreduction catalysts. Catal. Today 2013, 209, 1–27.CrossRefGoogle Scholar
  17. [17]
    Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem. Phys. Lett., 2008, 467, 91–194.CrossRefGoogle Scholar
  18. [18]
    Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J. Phys. Chem. C 2010, 114, 892–8898.CrossRefGoogle Scholar
  19. [19]
    Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134–135, 349–358.CrossRefGoogle Scholar
  20. [20]
    Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leafarchitectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.Google Scholar
  21. [21]
    Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 43–556.Google Scholar
  22. [22]
    Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 62–577.CrossRefGoogle Scholar
  23. [23]
    Park, H.-A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 304–5307.Google Scholar
  24. [24]
    Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chem.—Eur. J. 2014, 20, 906–9909.CrossRefGoogle Scholar
  25. [25]
    Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem. Commun. 1997, 841–842.Google Scholar
  26. [26]
    Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J. Chem. Soc. Faraday Trans. 1998, 94, 875–1880.Google Scholar
  27. [27]
    Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of CO2 with H2 over ZrO2: A study on interaction of hydrogen with photoexcited CO2. Phys. Chem. Chem. Phys. 2000, 2, 635–2639.Google Scholar
  28. [28]
    Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 2001, 3, 108–1113.Google Scholar
  29. [29]
    Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.; Funabiki, T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 2004, 108, 46–354.CrossRefGoogle Scholar
  30. [30]
    Teramura, K.; Okuoka, S.-I.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl. Catal. B: Environ. 2010, 96, 65–568.CrossRefGoogle Scholar
  31. [31]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1169–11186.CrossRefGoogle Scholar
  32. [32]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 3115–13118.CrossRefGoogle Scholar
  33. [33]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 7953–17979.CrossRefGoogle Scholar
  34. [34]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 758–1775.Google Scholar
  35. [35]
    Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an a–ß phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 3089–13092.Google Scholar
  36. [36]
    Vincent, J.; Guillot-Noël, O.; Binet, L.; Aschehoug, P.; Le Du, Y.; Beaudoux, F.; Goldner, P. Electron paramagnetic resonance and optical spectroscopy of Er-doped ß-Ga2O3. J. Appl. Phys. 2008, 104, 033519.CrossRefGoogle Scholar
  37. [37]
    Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 826–6829.CrossRefGoogle Scholar
  38. [38]
    Yuan, Y. P.; Du, W. M.; Qian, X. F. ZnxGa2O3+x (0 ≤ x ≤ 1) solid solution nanocrystals: Tunable composition and optical properties. J. Mater. Chem. 2012, 22, 53–659.Google Scholar
  39. [39]
    Pan, Y.-X.; Liu, C.-J.; Mei, D. H.; Ge, Q. F. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on ß-Ga2O3(100). Langmuir 2010, 26, 551–5558.Google Scholar
  40. [40]
    Xu, Y.-J.; Li, J.-Q.; Zhang, Y.-F.; Chen, W.-K. The adsorption and dissociation of Cl2 on the MgO (001) surface with vacancies: Embedded cluster model study. J. Chem. Phys. 2004, 120, 753–8760.Google Scholar
  41. [41]
    Di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc. Chem. Res. 2014, 47, 233–3241.CrossRefGoogle Scholar
  42. [42]
    Ogale, S. B. Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 2010, 22, 125–3155.CrossRefGoogle Scholar
  43. [43]
    Song, C. P.; Wu, D. Q.; Zhang, F.; Liu, P.; Lu, Q. H.; Feng, X. L. Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem. Commun. 2012, 48, 119–2121.Google Scholar
  44. [44]
    Pan, Y.-X.; Zhuang, H. Q.; Hong, J. D.; Fang, Z.; Liu, H.; Liu, B.; Huang, Y. Z.; Xu, R. Cadmium sulfide quantum dots supported on gallium and indium oxide for visiblelight- driven hydrogen evolution from water. ChemSusChem 2014, 7, 537–2544.CrossRefGoogle Scholar
  45. [45]
    Han, Y.; Liu, C.-J.; Ge, Q. F. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B 2006, 110, 463–7472.CrossRefGoogle Scholar
  46. [46]
    Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 034–1038.Google Scholar
  47. [47]
    Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalystloaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 0863–20868.CrossRefGoogle Scholar
  48. [48]
    Pan, Y.-X.; Liu, C.-J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 8–76.CrossRefGoogle Scholar
  49. [49]
    Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 600–7603.CrossRefGoogle Scholar
  50. [50]
    Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G., Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 98–801.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiChina
  2. 2.Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations