Advertisement

Nano Research

, Volume 9, Issue 6, pp 1570–1577 | Cite as

Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions

  • Meng Zhang
  • Miaoqiang Lyu
  • Jung-Ho Yun
  • Mahir Noori
  • Xiaojing Zhou
  • Nathan A. Cooling
  • Qiong Wang
  • Hua Yu
  • Paul C. DastoorEmail author
  • Lianzhou WangEmail author
Research Article

Abstract

A new type of lead-free, formamidinium (FA)-based halide perovskites, FASnI2Br, are investigated as light-harvesting materials for low-temperature processed p–i–n heterojunction solar cells with different configurations. The FASnI2Br perovskite, with a band-gap of 1.68 eV, exhibits optimal photovoltaic performance after low-temperature annealing at 75 °C. By using C60 as electron-transport layer, the device yields a hysteresis-less power conversion efficiency of 1.72%. The possible use of an inorganic MoO x film as a new type of independent hole-transport layer for the present tin-based perovskite solar cells is also demonstrated.

Keywords

lead-free perovskite perovskite solar cells low-temperature process fullerene molybdenum oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1051_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1033 KB.

References

  1. [1]
    Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448–2463.CrossRefGoogle Scholar
  2. [2]
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.CrossRefGoogle Scholar
  3. [3]
    Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534.CrossRefGoogle Scholar
  4. [4]
    Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.CrossRefGoogle Scholar
  5. [5]
    Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.CrossRefGoogle Scholar
  6. [6]
    Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.CrossRefGoogle Scholar
  7. [7]
    Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.CrossRefGoogle Scholar
  8. [8]
    Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127.CrossRefGoogle Scholar
  9. [9]
    Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N. Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3?xBrx) solar cells. J. Phys. Chem. C 2015, 119, 1763–1767.CrossRefGoogle Scholar
  10. [10]
    Marshall, K. P.; Walton, R. I.; Hatton, R. A. Tin perovskite/ fullerene planar layer photovoltaics: Improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 2015, 3, 11631–11640.CrossRefGoogle Scholar
  11. [11]
    Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 2015, 3, 14996–15000.CrossRefGoogle Scholar
  12. [12]
    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.CrossRefGoogle Scholar
  13. [13]
    Zhang, M.; Lyu, M. Q.; Yu, H.; Yun, J. H.; Wang, Q.; Wang, L. Z. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem.—Eur. J. 2015, 21, 434–439.CrossRefGoogle Scholar
  14. [14]
    Wang, Q.; Chen, H. J.; Liu, G.; Wang, L. Z. Control of organic–inorganic halide perovskites in solid-state solar cells: A perspective. Sci. Bull. 2015, 60, 405–418.CrossRefGoogle Scholar
  15. [15]
    Jung, H. S.; Park, N. G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.CrossRefGoogle Scholar
  16. [16]
    Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.CrossRefGoogle Scholar
  17. [17]
    O’Regan, B. C.; Barnes, P. R. F.; Li, X. E.; Law, C.; Palomares, E.; Marin-Beloqui, J. M. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J. Am. Chem. Soc. 2015, 137, 5087–5099.CrossRefGoogle Scholar
  18. [18]
    Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddin, M. K.; Bolink, H. J. Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 2014, 7, 994–997.CrossRefGoogle Scholar
  19. [19]
    Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.CrossRefGoogle Scholar
  20. [20]
    Lin, Q. Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2014, 9, 106–112.CrossRefGoogle Scholar
  21. [21]
    Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 2015, 5, 1402321.Google Scholar
  22. [22]
    Shao, Y. H.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.CrossRefGoogle Scholar
  23. [23]
    Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.CrossRefGoogle Scholar
  24. [24]
    Xie, F. X.; Choy, W. C. H.; Wang, C. D.; Li, X. C.; Zhang, S. Q.; Hou, J. H. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics. Adv. Mater. 2013, 25, 2051–2055.CrossRefGoogle Scholar
  25. [25]
    Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.CrossRefGoogle Scholar
  26. [26]
    Liu, P.; Liu, X. L.; Lyu, L.; Xie, H. P.; Zhang, H.; Niu, D. M.; Huang, H.; Bi, C.; Xiao, Z. G.; Huang, J. S. et al. Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl. Phys. Lett. 2015, 106, 193903.CrossRefGoogle Scholar
  27. [27]
    Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099.CrossRefGoogle Scholar
  28. [28]
    Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.CrossRefGoogle Scholar
  29. [29]
    Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.CrossRefGoogle Scholar
  30. [30]
    Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 2014, 53, 9898–9903.Google Scholar
  31. [31]
    Zhang, M.; Yu, H.; Yun, J. H.; Lyu, M. Q.; Wang, Q.; Wang, L. Z. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem. Commun. 2015, 51, 10038–10041.CrossRefGoogle Scholar
  32. [32]
    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.CrossRefGoogle Scholar
  33. [33]
    Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2952–2959.CrossRefGoogle Scholar
  34. [34]
    Bi, C.; Yuan, Y. B.; Fang, Y. J.; Huang, J. S. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1401616.Google Scholar
  35. [35]
    Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.CrossRefGoogle Scholar
  36. [36]
    Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.CrossRefGoogle Scholar
  37. [37]
    Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Highefficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998.CrossRefGoogle Scholar
  38. [38]
    Gao, J. B.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H.-Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011, 11, 3263–3266.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Meng Zhang
    • 1
  • Miaoqiang Lyu
    • 1
  • Jung-Ho Yun
    • 1
  • Mahir Noori
    • 2
  • Xiaojing Zhou
    • 2
  • Nathan A. Cooling
    • 2
  • Qiong Wang
    • 1
  • Hua Yu
    • 2
  • Paul C. Dastoor
    • 1
    Email author
  • Lianzhou Wang
    • 1
    Email author
  1. 1.Nanomaterials Centre, School of Chemical Engineering and AIBNThe University of QueenslandSt Lucia, BrisbaneAustralia
  2. 2.Centre for Organic ElectronicsUniversity of NewcastleCallaghanAustralia

Personalised recommendations