Nano Research

, Volume 9, Issue 5, pp 1434–1441 | Cite as

Metal intercalation-induced selective adatom mass transport on graphene

  • Xiaojie Liu
  • Cai-Zhuang Wang
  • Myron Hupalo
  • Hai-Qing Lin
  • Kai-Ming Ho
  • Patricia A. Thiel
  • Michael C. Tringides
Research Article

Abstract

Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. This alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.

Keywords

graphene intercalation electrostatic potential selective adsorption first-principle calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    McChesney, J. L.; Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Gonzá lez, J.; Rotenberg, E. Extended van hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 2010, 104, 136803.CrossRefGoogle Scholar
  2. [2]
    Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603–4607.CrossRefGoogle Scholar
  3. [3]
    Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B.-L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.CrossRefGoogle Scholar
  4. [4]
    Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Metal nanostructure formation on graphene: Weak versus strong bonding. Adv. Mater. 2011, 23, 2082–2087.CrossRefGoogle Scholar
  5. [5]
    Liu, X. J.; Wang, C. Z.; Yao, Y. X.; Lu, W. C.; Hupalo, M.; Tringides, M. C.; Ho, K. M. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 2011, 83, 235411.CrossRefGoogle Scholar
  6. [6]
    Liu, X. J.; Hupalo, M.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Growth morphology and thermal stability of metal islands on graphene. Phys. Rev. B 2012, 86, 081414(R).CrossRefGoogle Scholar
  7. [7]
    Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Fe–Fe adatom interaction and growth morphology on graphene. Phys. Rev. B 2011, 84, 235446.CrossRefGoogle Scholar
  8. [8]
    Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lu, W. C.; Tringides, M. C.; Yao, Y. X.; Ho, K. M. Metals on graphene: Correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 2012, 14, 9157–9166.CrossRefGoogle Scholar
  9. [9]
    Binz, S. M.; Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Conrad, E. H.; Tringides, M. C. High island densities and long range repulsive interactions: Fe on epitaxial graphene. Phys. Rev. Lett. 2012, 109, 026103.CrossRefGoogle Scholar
  10. [10]
    Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lin, H.-Q.; Ho, K. M.; Tringides, M. C. Metal on graphene: Interactions, growth morphology, and thermal stability. Crystals 2013, 3, 79–111.CrossRefGoogle Scholar
  11. [11]
    Baringhaus, J.; Stö hr, A.; Forti, S.; Krasnikov, S. A.; Zakharov, A. A.; Starke, U.; Tegenkamp, C. Bipolar gating of epitaxial graphene by intercalation of Ge. Appl. Phys. Lett. 2014, 104, 261602.CrossRefGoogle Scholar
  12. [12]
    Schumacher, S.; Wehling, T. O.; Lazic, P., Runte, S.; Fö rster, D. F.; Busse, C., Petrovic, M.; Kralj, M.; Blü gel, S.; Atodiresei, N. et al. The backside of graphene: Manipulating adsorption by intercalation. Nano Lett. 2013, 13, 5013–5019.CrossRefGoogle Scholar
  13. [13]
    Schumacher, S.; Fö rster, D. F.; Rö sner, M.; Wehling, T. O.; Michely, T. Strain in epitaxial graphene visualized by intercalation. Phys. Rev. Lett. 2013, 110, 086111.CrossRefGoogle Scholar
  14. [14]
    Petrovic, M.; Rakic, Š. I.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazic, P.; Pletikosic, I.; Pan, Z.-H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.CrossRefGoogle Scholar
  15. [15]
    Sandin, A.; Jayasekera, T.; Rowe, J. E.; Kim, K. W.; Nardelli, M. B.; Dougherty, D. B. Multiple coexisting intercalation structures of sodium in epitaxial graphene–SiC interfaces. Phys. Rev. B 2012, 85, 125410.CrossRefGoogle Scholar
  16. [16]
    Emtsev, K. V.; Zakharov, A. A.; Coletti, C.; Forti, S.; Starke, U. Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Phys. Rev. B 2011, 84, 125423.CrossRefGoogle Scholar
  17. [17]
    Förster, D. F.; Wehling, T. O.; Schumacher, S.; Rosch, A.; Michely, T. Phase coexistence of clusters and islands: Europium on graphene. New J. Phys. 2012, 14, 023022.CrossRefGoogle Scholar
  18. [18]
    Song, C.-L.; Sun, B.; Wang, Y.-L.; Jiang, Y.-P.; Wang, L. L.; He, K.; Chen, X.; Zhang, P.; Ma, X.-C.; Xue, Q.-K. Chargetransfer- induced cesium superlattices on graphene. Phys. Rev. Lett. 2012, 108, 156803.CrossRefGoogle Scholar
  19. [19]
    Luo, Z. C.; Somers, L. A.; Dan, Y. P.; Ly, T.; Kybert, N. J.; Mele, E. J.; Johnson, A. T. C. Size-selective nanoparticle growth on few-layer graphene films. Nano Lett. 2010, 10, 777–781.CrossRefGoogle Scholar
  20. [20]
    Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on N-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944–946.CrossRefGoogle Scholar
  21. [21]
    Jiang, N.; Zhang, Y. Y.; Liu, Q.; Cheng, Z. H.; Deng, Z. T.; Du, S. X.; Gao, H.-J.; Beck, M. J.; Pantelides, S. T. Diffusivity control in molecule-on-metal systems using electric fields. Nano Lett. 2010, 10, 1184–1188.CrossRefGoogle Scholar
  22. [22]
    Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.CrossRefGoogle Scholar
  23. [23]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  24. [24]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  25. [25]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  26. [26]
    Perdew, J. P.; Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  27. [27]
    Makov, G.; Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51, 4014–4022.CrossRefGoogle Scholar
  28. [28]
    Neugebauer, J.; Scheffler, M. Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067–16080.CrossRefGoogle Scholar
  29. [29]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  30. [30]
    Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  31. [31]
    Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.CrossRefGoogle Scholar
  32. [32]
    The interaction energy between the two adatoms on graphene is defined as Einter(r)= E a2(r)-2E a1. Here, E a2(r) is the adsorption energy of two Eu adatoms on graphene at a separation r, and Ea1 is the adsorption energy of a single Eu adatom. The E a2(r) and Ea1 are obtained by first-principles DFT calculations using a 10 - 10 graphene supercell with one or two adatoms and periodic boundary conditions. The interaction between Eu–Eu adatoms is attractive at small separations (less than 5.0 Å) but becomes repulsive at the distances larger than 6.0 Å with maximum repulsion of 0.24 eV.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaojie Liu
    • 1
  • Cai-Zhuang Wang
    • 2
  • Myron Hupalo
    • 2
  • Hai-Qing Lin
    • 3
  • Kai-Ming Ho
    • 2
  • Patricia A. Thiel
    • 4
  • Michael C. Tringides
    • 2
  1. 1.Center for Quantum Science and School of PhysicsNortheast Normal UniversityChangchunChina
  2. 2.Ames Laboratory–U.S. Department of Energy, and Department of Physics and AstronomyIowa State UniversityAmesUSA
  3. 3.Beijing Computational Science Research CenterBeijingChina
  4. 4.Ames Laboratory–U.S. Department of Energy, Department of Chemistry and Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations