Advertisement

Nano Research

, Volume 9, Issue 5, pp 1334–1345 | Cite as

Anisotropic nanowire growth via a self-confined amorphous template process: A reconsideration on the role of amorphous calcium carbonate

  • Li-Bo Mao
  • Lei Xue
  • Denis Gebauer
  • Lei Liu
  • Xiao-Fang Yu
  • Yang-Yi Liu
  • Helmut Cölfen
  • Shu-Hong Yu
Research Article

Abstract

Calcium carbonate crystals with various morphologies have been found in a variety of biospecimens and artificially synthesized structures. Usually, the diversity in morphology can be attributed to different types of interactions between the specific crystal faces and the environment or the templates used for the growth of CaCO3 crystals. On the other hand, isotropic amorphous calcium carbonate (ACC) has been recognized as the precursor of other crystalline calcium carbonate forms for both in vivo and in vitro systems. However, here we propose a self-confined amorphous template process leading to the anisotropic growth of single-crystalline calcite nanowires. Initiated by the assembly of precipitated nanoparticles, the calcite nanowires grew via the continuous precipitation of partly crystallized ACC nanodroplets onto their tips. Then, the crystalline domains in the tip, which were generated from the partly crystallized nanodroplets, coalesced in the interior of the nanowire to form a single-crystalline core. The ACC domains were left outside and spontaneously formed a protective shell to retard the precipitation of CaCO3 onto the side surface of the nanowire and thus guided the highly anisotropic growth of nanowires as a template.

Keywords

amorphous calcium carbonate calcite nanowire anisotropic growth self-confined amorphous template 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1029_MOESM1_ESM.pdf (4.7 mb)
Supplementary material, approximately 4.74 MB.
12274_2016_1029_MOESM2_ESM.avi (2.2 mb)
Supplementary material, approximately 2.24 MB.

References

  1. [1]
    Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412, 819–822.CrossRefGoogle Scholar
  2. [2]
    Huang, Z. W.; Li, X. D. Origin of flaw-tolerance in nacre. Sci. Rep. 2013, 3, 1693.Google Scholar
  3. [3]
    Zimmermann, E. A.; Gludovatz, B.; Schaible, E.; Dave, N. K. N.; Yang, W.; Meyers, M. A.; Ritchie, R. O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2013, 4, 2634.CrossRefGoogle Scholar
  4. [4]
    Launey, M. E.; Buehler, M. J.; Ritchie, R. O. On the mechanistic origins of toughness in bone. Ann. Rev. Mater. Res. 2010, 40, 25–53.CrossRefGoogle Scholar
  5. [5]
    Gordon, L. M.; Cohen, M. J.; MacRenaris, K. W.; Pasteris, J. D.; Seda, T.; Joester, D. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015, 347, 746–750.CrossRefGoogle Scholar
  6. [6]
    Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306, 1161–1164.CrossRefGoogle Scholar
  7. [7]
    Li, X. D.; Xu, Z.-H.; Wang, R. Z. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 2006, 6, 2301–2304.CrossRefGoogle Scholar
  8. [8]
    Fritz, M.; Belcher, A. M.; Radmacher, M.; Walters, D. A.; Hansma, P. K.; Stucky, G. D.; Morse, D. E.; Mann, S. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994, 371, 49–51.CrossRefGoogle Scholar
  9. [9]
    Yao, H.-B.; Ge, J.; Mao, L.-B.; Yan, Y.-X.; Yu, S.-H. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications. Adv. Mater. 2014, 26, 163–188.CrossRefGoogle Scholar
  10. [10]
    Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551–4627.CrossRefGoogle Scholar
  11. [11]
    Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15, 959–970.CrossRefGoogle Scholar
  12. [12]
    Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Am. Chem. Soc. 2002, 124, 32–39.CrossRefGoogle Scholar
  13. [13]
    Sommerdijk, N. A. J. M.; de With, G. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 2008, 108, 4499–4550.CrossRefGoogle Scholar
  14. [14]
    Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P. U. P. A. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc. Natl. Acad. Sci. USA 2008, 105, 17362–17366.CrossRefGoogle Scholar
  15. [15]
    Radha, A. V.; Forbes, T. Z.; Killian, C. E.; Gilbert, P. U. P. A.; Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 2010, 107, 16438–16443.CrossRefGoogle Scholar
  16. [16]
    Gong, Y. U. T.; Killian, C. E.; Olson, I. C.; Appathurai, N. P.; Amasino, A. L.; Martin, M. C.; Holt, L. J.; Wilt, F. H.; Gilbert, P. U. P. A. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 2012, 109, 6088–6093.CrossRefGoogle Scholar
  17. [17]
    Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jäger, C.; Cölfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. USA 2005, 102, 12653–12655.CrossRefGoogle Scholar
  18. [18]
    Seto, J.; Ma, Y. R.; Davis, S. A.; Meldrum, F.; Gourrier, A.; Kim, Y.-Y.; Schilde, U.; Sztucki, M.; Burghammer, M.; Maltsev, S. et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl. Acad. Sci. USA 2012, 109, 3699–3704.CrossRefGoogle Scholar
  19. [19]
    Meldrum, F. C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.CrossRefGoogle Scholar
  20. [20]
    Dey, A.; de With, G.; Sommerdijk, N. A. J. M. In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem. Soc. Rev. 2010, 39, 397–409.CrossRefGoogle Scholar
  21. [21]
    Yu, S. H.; Cölfen, H.; Tauer, K.; Antonietti, M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nat. Mater. 2005, 4, 51–55.CrossRefGoogle Scholar
  22. [22]
    Zhang, Q.; Liu, S.-J.; Yu, S.-H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 2009, 19, 191–207.CrossRefGoogle Scholar
  23. [23]
    Chen, S.-F.; Zhu, J.-H.; Jiang, J.; Cai, G.-B.; Yu, S.-H. Polymer-controlled crystallization of unique mineral superstructures. Adv. Mater. 2010, 22, 540–545.CrossRefGoogle Scholar
  24. [24]
    Natalio, F.; Corrales, T. P.; Panthöfer, M.; Schollmeyer, D.; Lieberwirth, I.; Müller, W. E. G.; Kappl, M.; Butt, H.-J.; Tremel, W. Flexible minerals: Self-assembled calcite spicules with extreme bending strength. Science 2013, 339, 1298–1302.CrossRefGoogle Scholar
  25. [25]
    Noorduin, W. L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 2013, 340, 832–837.CrossRefGoogle Scholar
  26. [26]
    Aizenberg, J.; Müller, D. A.; Grazul, J. L.; Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 2003, 299, 1205–1208.CrossRefGoogle Scholar
  27. [27]
    Li, C.; Qi, L. M. Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase. Angew. Chem., Int. Ed. 2008, 47, 2388–2393.CrossRefGoogle Scholar
  28. [28]
    Kim, Y.-Y.; Hetherington, N. B. J.; Noel, E. H.; Kröger, R.; Charnock, J. M.; Christenson, H. K.; Meldrum, F. C. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate. Angew. Chem., Int. Ed. 2011, 50, 12572–12577.CrossRefGoogle Scholar
  29. [29]
    Sakamoto, T.; Nishimura, Y.; Nishimura, T.; Kato, T. Photoimaging of self-organized CaCO3/polymer hybrid films by formation of regular relief and flat surface morphologies. Angew. Chem., Int. Ed. 2011, 50, 5856–5859.CrossRefGoogle Scholar
  30. [30]
    Cusack, M.; Freer, A. Biomineralization: Elemental and organic influence in carbonate systems. Chem. Rev. 2008, 108, 4433–4454.CrossRefGoogle Scholar
  31. [31]
    Olszta, M. J.; Gajjeraman, S.; Kaufman, M.; Gower, L. B. Nanofibrous calcite synthesized via a solution-precursor-solid mechanism. Chem. Mater. 2004, 16, 2355–2362.CrossRefGoogle Scholar
  32. [32]
    Volkmer, D.; Harms, M.; Gower, L.; Ziegler, A. Morphosynthesis of nacre-type laminated CaCO3 thin films and coatings. Angew. Chem., Int. Ed. 2005, 44, 639–644.CrossRefGoogle Scholar
  33. [33]
    Oaki, Y.; Kajiyama, S.; Nishimura, T.; Imai, H.; Kato, T. Nanosegregated amorphous composites of calcium carbonate and an organic polymer. Adv. Mater. 2008, 20, 3633–3637.CrossRefGoogle Scholar
  34. [34]
    Kim, Y.-Y.; Kulak, A. N.; Li, Y. T.; Batten, T.; Kuball, M.; Armes, S. P.; Meldrum, F. C. Substrate-directed formation of calcium carbonate fibres. J. Mater. Chem. 2009, 19, 387–398.CrossRefGoogle Scholar
  35. [35]
    Homeijer, S. J.; Barrett, R. A.; Gower, L. B. Polymer-induced liquid-precursor (PILP) process in the non-calcium based systems of barium and strontium carbonate. Cryst. Growth Des. 2010, 10, 1040–1052.CrossRefGoogle Scholar
  36. [36]
    Wolf, S. E.; Leiterer, J.; Pipich, V.; Barrea, R.; Emmerling, F.; Tremel, W. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: Gaining insight into the mechanism of “polymer-induced liquid precursor” processes. J. Am. Chem. Soc. 2011, 133, 12642–12649.CrossRefGoogle Scholar
  37. [37]
    Lee, K.; Wagermaier, W.; Masic, A.; Kommareddy, K. P.; Bennet, M.; Manjubala, I.; Lee, S.-W.; Park, S. B.; Cölfen, H.; Fratzl, P. Self-assembly of amorphous calcium carbonate microlens arrays. Nat. Commun. 2012, 3, 725.CrossRefGoogle Scholar
  38. [38]
    Long, X.; Ma, Y. R.; Cho, K. R.; Li, D. S.; De Yoreo, J. J.; Qi, L. M. Oriented calcite micropillars and prisms formed through aggregation and recrystallization of poly(acrylic acid) stabilized nanoparticles. Cryst. Growth Des. 2013, 13, 3856–3863.CrossRefGoogle Scholar
  39. [39]
    Cantaert, B.; Verch, A.; Kim, Y.-Y.; Ludwig, H.; Paunov, V. N.; Kröger, R.; Meldrum, F. C. Formation and structure of calcium carbonate thin films and nanofibers precipitated in the presence of poly(allylamine hydrochloride) and magnesium ions. Chem. Mater. 2013, 25, 4994–5003.CrossRefGoogle Scholar
  40. [40]
    Ihli, J.; Wong, W. C.; Noel, E. H.; Kim, Y.-Y.; Kulak, A. N.; Christenson, H. K.; Duer, M. J.; Meldrum, F. C. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 2014, 5, 3169.CrossRefGoogle Scholar
  41. [41]
    Smeets, P. J. M.; Cho, K. R.; Kempen, R. G. E.; Sommerdijk, N. A. J. M.; De Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 2015, 14, 394–399.CrossRefGoogle Scholar
  42. [42]
    Laocharoensuk, R.; Palaniappan, K.; Smith, N. A.; Dickerson, R. M.; Werder, D. J.; Baldwin, J. K.; Hollingsworth, J. A. Flow-based solution-liquid-solid nanowire synthesis. Nat. Nanotechnol. 2013, 8, 660–666.CrossRefGoogle Scholar
  43. [43]
    Kitano, Y. A study of the polymorphic formation of calcium carbonate in thermal springs with an emphasis on the effect of temperature. Bull. Chem. Soc. Jpn. 1962, 35, 1980–1985.CrossRefGoogle Scholar
  44. [44]
    Wang, T.; Reinecke, A.; Cölfen, H. In situ investigation of complex BaSO4 fiber generation in the presence of sodium polyacrylate. 2. Crystallization mechanisms. Langmuir 2006, 22, 8986–8994.CrossRefGoogle Scholar
  45. [45]
    Pouget, E. M.; Bomans, P. H. H.; Goos, J. A. C. M.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 2009, 323, 1455–1458.CrossRefGoogle Scholar
  46. [46]
    Song, R. Q.; Cölfen, H. Mesocrystals—Ordered nanoparticle superstructures. Adv. Mater. 2010, 22, 1301–1330.CrossRefGoogle Scholar
  47. [47]
    Cheng, X. G.; Varona, P. L.; Olszta, M. J.; Gower, L. B. Biomimetic synthesis of calcite films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2007, 307, 395–404.CrossRefGoogle Scholar
  48. [48]
    Berg, J. K.; Jordan, T.; Binder, Y.; Börner, H. G.; Gebauer, D. Mg2+ tunes the wettability of liquid precursors of CaCO3: Toward controlling mineralization sites in hybrid materials. J. Am. Chem. Soc. 2013, 135, 12512–12515.CrossRefGoogle Scholar
  49. [49]
    Gebauer, D.; Völkel, A.; Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819–1822.CrossRefGoogle Scholar
  50. [50]
    Kellermeier, M.; Picker, A.; Kempter, A.; Cölfen, H.; Gebauer, D. A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory. Adv. Mater. 2014, 26, 752–757.CrossRefGoogle Scholar
  51. [51]
    Gebauer, D.; Kellermeier, M.; Gale, J. D.; Bergström, L.; Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, 2348–2371.CrossRefGoogle Scholar
  52. [52]
    Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.CrossRefGoogle Scholar
  53. [53]
    Lupulescu, A. I.; Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 2014, 344, 729–732.CrossRefGoogle Scholar
  54. [54]
    Li, X. D.; Huang, Z. W. Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre. Phys. Rev. Lett. 2009, 102, 075502.CrossRefGoogle Scholar
  55. [55]
    Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Li-Bo Mao
    • 1
  • Lei Xue
    • 1
  • Denis Gebauer
    • 2
  • Lei Liu
    • 1
  • Xiao-Fang Yu
    • 1
  • Yang-Yi Liu
    • 1
  • Helmut Cölfen
    • 2
  • Shu-Hong Yu
    • 1
  1. 1.Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Center for Excellence in Nanoscience, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of ChemistryUniversity of KonstanzKonstanzGermany

Personalised recommendations