Nano Research

, Volume 9, Issue 1, pp 240–248 | Cite as

Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery

  • Benjamin Papandrea
  • Xu Xu
  • Yuxi Xu
  • Chih-Yen Chen
  • Zhaoyang Lin
  • Gongming Wang
  • Yanzhu Luo
  • Matthew Liu
  • Yu Huang
  • Liqiang Mai
  • Xiangfeng Duan
Research Article


Lithium–sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium–sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene–sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene–sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 96 mAh·g–1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.


energy storage graphene framework three-dimensional (3D)-network high loading lithium sulfur battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1005_MOESM1_ESM.pdf (592 kb)
Supplementary material, approximately 590 KB. (460 kb)
Supplementary material, approximately 460 KB.


  1. [1]
    Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.CrossRefGoogle Scholar
  2. [2]
    Yamada, A.; Chung, S.-C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224–A229.CrossRefGoogle Scholar
  3. [3]
    Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  4. [4]
    Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  5. [5]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  6. [6]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  7. [7]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  8. [8]
    He, G.; Ji, X. L.; Nazar, L. High “C” rate Li–S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.CrossRefGoogle Scholar
  9. [9]
    Lin, T. Q.; Tang, Y. F.; Wang, Y. M.; Bi, H.; Liu, Z. Q.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium–sulfur batteries. Energy Environ. Sci. 2013, 6, 1283–1290.CrossRefGoogle Scholar
  10. [10]
    Manthiram, A.; Fu, Y. Z.; Chung, S.-H.; Zu, C. X.; Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  11. [11]
    Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.CrossRefGoogle Scholar
  12. [12]
    Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826.CrossRefGoogle Scholar
  13. [13]
    Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.CrossRefGoogle Scholar
  14. [14]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  15. [15]
    Qiu, Y. C.; Li, W. F.; Li, G. Z.; Hou, Y.; Zhou, L. S.; Li, H. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Polyaniline-modified cetyltrimethylammonium bromide–graphene oxide–sulfur nanocomposites with enhanced performance for lithium–sulfur batteries. Nano Res. 2014, 7, 1355–1363.CrossRefGoogle Scholar
  16. [16]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar
  17. [17]
    Lv, D. P.; Zheng, J. M.; Li, Q. Y.; Xie, X.; Ferrara, S.; Nie, Z. M.; Mehdi, L. B.; Browning, N. D.; Zhang, J. G.; Graff, G. L. et al. High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.CrossRefGoogle Scholar
  18. [18]
    Cheng, X.-B.; Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Zhao, M.-Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 2014, 4, 65–72.CrossRefGoogle Scholar
  19. [19]
    Lu, S. T.; Chen, Y.; Wu, X. H.; Wang, Z. D.; Li, Y. Threedimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci. Rep. 2014, 4, 4629.Google Scholar
  20. [20]
    Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.CrossRefGoogle Scholar
  21. [21]
    Zheng, J. M.; Gu, M.; Wagner, M. J.; Hays, K. A.; Li, X. H.; Zuo, P. J.; Wang, C. M.; Zhang, J.-G.; Liu, J.; Xiao, J. Revisit carbon/sulfur composite for Li–S batteries. J. Electrochem. Soc. 2013, 160, A1624–A1628.Google Scholar
  22. [22]
    Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Peng, X.-X.; Fu, F.; Huang, L.; Li, J.-T.; Sun, S.-G. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium–sulfur batteries. ACS Appl. Mat. Interfaces 2013, 5, 10782–10793.CrossRefGoogle Scholar
  23. [23]
    Nazar, L. F.; Cuisinier, M.; Pang, Q. Lithium–sulfur batteries. MRS Bull. 2014, 39, 436–442.CrossRefGoogle Scholar
  24. [24]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  25. [25]
    Tang, Z. H.; Shen, S. L.; Zhuang, J.; Wang, X. Noblemetal-promoted three-dimensional macroassembly of singlelayered graphene oxide. Angew. Chem., Int. Ed. 2010, 49, 4603–4607.CrossRefGoogle Scholar
  26. [26]
    Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled threedimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.CrossRefGoogle Scholar
  27. [27]
    Xu, Y. X.; Chen, C.-Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.CrossRefGoogle Scholar
  28. [28]
    Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.CrossRefGoogle Scholar
  29. [29]
    Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based highperformance supercapacitors. Adv. Mater. 2013, 25, 5779–5784.CrossRefGoogle Scholar
  30. [30]
    Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.CrossRefGoogle Scholar
  31. [31]
    Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.Google Scholar
  32. [32]
    Kim, H.; Lim, H.-D.; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2014, 2, 33–47.CrossRefGoogle Scholar
  33. [33]
    Zhou, G. M.; Yin, L.-C.; Wang, D.-W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H.-M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  34. [34]
    Xi, K.; Kidambi, P. R.; Chen, R. J.; Gao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free threedimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.CrossRefGoogle Scholar
  35. [35]
    Gao, X. F.; Li, J. Y.; Guan, D. S.; Yuan, C. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency. ACS Appl. Mat. Interfaces 2014, 6, 4154–4159.CrossRefGoogle Scholar
  36. [36]
    Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 2014, 14, 4044–4049.CrossRefGoogle Scholar
  37. [37]
    Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.CrossRefGoogle Scholar
  38. [38]
    Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 2015, 5, 1500408.Google Scholar
  39. [39]
    Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.CrossRefGoogle Scholar
  40. [40]
    Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.Google Scholar
  41. [41]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  42. [42]
    Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Benjamin Papandrea
    • 1
  • Xu Xu
    • 1
    • 2
  • Yuxi Xu
    • 1
  • Chih-Yen Chen
    • 3
  • Zhaoyang Lin
    • 1
  • Gongming Wang
    • 1
  • Yanzhu Luo
    • 2
  • Matthew Liu
    • 3
  • Yu Huang
    • 3
    • 4
  • Liqiang Mai
    • 2
  • Xiangfeng Duan
    • 1
    • 4
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  4. 4.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations