Nano Research

, Volume 9, Issue 4, pp 1079–1090 | Cite as

Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease

  • Nan Gao
  • Kai Dong
  • Andong Zhao
  • Hanjun Sun
  • Ying Wang
  • Jinsong Ren
  • Xiaogang QuEmail author
Research Article


Proteolytic degradation of amyloid-β (Aβ) aggregates and clearance of Aβ-induced reactive oxygen species (ROS) have received significant attention for the treatment of Alzheimer’s disease (AD). However, it is difficult, and often unfeasible, to directly upregulate or transport intracellular native enzymes. More importantly, penetration of the blood-brain barrier (BBB) has presented a major impediment. Herein, we report on the rational design of a polyoxometalatebased nanozyme with both protease-like activity for depleting Aβ aggregates, and superoxide dismutase (SOD)-like activity for scavenging Aβ-mediated ROS. Furthermore, this nanozyme acts as a metal chelator to remove Cu from Cu-induced Aβ oligomers. More intriguingly, the nanozyme can cross the BBB and exhibits low toxicity. This work provides new insights into the design and synthesis of inorganic nanozymes as multifunctional therapeutic agents in the treatment of AD.


polyoxometalates nanozymes protease activities superoxide dismutase (SOD) activities Alzheimer’s disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1000_MOESM1_ESM.pdf (4.1 mb)
Supplementary material, approximately 4.12 MB.


  1. [1]
    Haass, C.; Selkoe, D. J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112.CrossRefGoogle Scholar
  2. [2]
    Götz, J.; Ittner, L. M. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci. 2008, 9, 532–544.CrossRefGoogle Scholar
  3. [3]
    Zhang, M.; Mao, X. B.; Yu, Y.; Wang, C. X.; Yang, Y. L.; Wang. C. Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater. 2013, 25, 3780–3801.CrossRefGoogle Scholar
  4. [4]
    Qing, G. Y.; Zhao, S. L.; Xiong, Y. T.; Lv, Z. Y.; Jiang, F. L.; Liu, Y.; Chen, H.; Zhang, M. X.; Sun. T. L. Chiral effect at protein/graphene interface: A bioinspired perspective to understand amyloid formation. J. Am. Chem. Soc. 2014, 136, 10736–10742.CrossRefGoogle Scholar
  5. [5]
    Edrey, Y. H.; Oddo, S.; Cornelius, C.; Caccamo, A.; Calabrese, V.; Buffenstein, R. Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents. J. Neurosci. Res. 2014, 92, 195–205.CrossRefGoogle Scholar
  6. [6]
    Choi, J. S.; Braymer, J. J.; Nang, R. P. R.; Ramamoorthy, A.; Lim, M. H. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 21990–21995.CrossRefGoogle Scholar
  7. [7]
    Geng, J.; Li, M.; Ren, J. S.; Wang, E. B.; Qu, X. G. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer's disease. Angew. Chem., Int. Ed. 2011, 50, 4184–4188.CrossRefGoogle Scholar
  8. [8]
    Huang, F.; Wang, J. Z.; Qu, A. T.; Shen, L. L.; Liu, J. J.; Liu, J. F.; Zhang, Z. K.; An, Y. L.; Shi, L. Q. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem., Int. Ed. 2014, 53, 8985–8990.CrossRefGoogle Scholar
  9. [9]
    Lee, T. Y.; Suh, J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem. Soc. Rev. 2009, 38, 1949–1957.CrossRefGoogle Scholar
  10. [10]
    Grasso, G.; Giuffrid, M. L.; Rizzarelli, E. Metallostasis and amyloid β-degrading enzymes. Metallomics 2012, 4, 937–949.CrossRefGoogle Scholar
  11. [11]
    Geng, J.; Li, M.; Wu, L.; Ren, J. S.; Qu, X. G. Liberation of copper from amyloid plaques: Making a risk factor useful for Alzheimer’s disease treatment. J. Med. Chem. 2012, 55, 9146–9155.CrossRefGoogle Scholar
  12. [12]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  13. [13]
    Faller, P.; Hureau, C.; La Penna, G. Metal ions and intrinsically disordered proteins and peptides: From Cu/Zn amyloid-β to general principles. Acc. Chem. Res. 2014, 47, 2252–2259.CrossRefGoogle Scholar
  14. [14]
    Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.CrossRefGoogle Scholar
  15. [15]
    Yoo, S.; Yang, M.; Brender, J. R.; Subramanian, V.; Sun, K.; Joo, N. E.; Jeong, S. H.; Ramamoorthy, A.; Kotov, N. A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angew. Chem., Int. Ed. 2011, 50, 5110–5115.CrossRefGoogle Scholar
  16. [16]
    Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4523.CrossRefGoogle Scholar
  17. [17]
    Gao, N.; Sun, H. J.; Dong, K.; Ren, J. S.; Duan, T. C.; Xu, C.; Qu, X. G. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat. Commun. 2014, 5, 3422.Google Scholar
  18. [18]
    Timári, S.; Cerea, R.; Várnagy, K. Characterization of CuZnSOD model complexes from a redox point of view: Redox properties of copper(II) complexes of imidazole containing ligands. J. Inorg. Biochem. 2011, 105, 1009–1017.CrossRefGoogle Scholar
  19. [19]
    Macdonell, A.; Johnson, N. A. B.; Surman, A. J.; Cronin, L. Configurable nanosized metal oxide oligomers via precise “click” coupling control of hybrid polyoxometalates. J. Am. Chem. Soc. 2015, 137, 5662–5665.CrossRefGoogle Scholar
  20. [20]
    Xing, X. L.; Liu, R. J.; Yu, X. L.; Zhang, G. J.; Cao, H. B.; Yao, J. N.; Ren, B. Z.; Jiang, Z. X.; Zhao, H. Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 2013, 1, 1488–1494.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. F.; Neyman, A.; Arkhangelsky, E.; Gitis, V.; Meshi, L.; Weinstock, I. A. Self-Assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J. Am. Chem. Soc. 2009, 131, 17412–17422.CrossRefGoogle Scholar
  22. [22]
    Hinterwirth, H.; Kappe, S.; Waitz, T.; Prohaska, T.; Lindner, W.; Lämmerhofer, M. Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma-mass spectrometry. ACS Nano 2013, 7, 1129–1136.CrossRefGoogle Scholar
  23. [23]
    Ojea-Jiménez, I.; García-Fernández, L.; Lorenzo, J.; Puntes, V. F. Facile preparation of cationic gold nanoparticlebioconjugates for cell penetration and nuclear targeting. ACS Nano 2012, 6, 7692–7702.CrossRefGoogle Scholar
  24. [24]
    Keita, B.; Biboum, R. N.; Mbomekallé, I. M.; Floquet, S.; Simonnet-Jégat, C.; Cadot, E.; Miserque, F.; Berthet, P.; Nadjo, L. One-step synthesis and stabilization of gold nanoparticles in water with the simple oxothiometalate Na2[Mo33-S)(µ-S)3(Hnta)3]. J. Mater. Chem. 2008, 18, 3196–3199.CrossRefGoogle Scholar
  25. [25]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  26. [26]
    Gao, N.; Sun, H. J.; Dong, K.; Ren, J. S.; Qu, X. G. Goldnanoparticle- based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem.—Eur. J. 2015, 21, 829–835.CrossRefGoogle Scholar
  27. [27]
    Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electroncoupled- proton buffer. Nat. Chem. 2013, 5, 403–409.CrossRefGoogle Scholar
  28. [28]
    Perera, V. S.; Liu, H. J.; Wang, Z. Q.; Huang, S. D. Cellpermeable Au@ZnMoS4 core–shell nanoparticles: Toward a novel cellular copper detoxifying drug for Wilson’s disease. Chem. Mater. 2013, 25, 4703–4709.CrossRefGoogle Scholar
  29. [29]
    Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522–529.CrossRefGoogle Scholar
  30. [30]
    Lin, Z. M.; Monteiro-Riviere, N. A.; Riviere, J. E. Pharmacokinetics of metallic nanoparticles. WIREs Nanomed. Nanobiotechnol. 2015, 7, 189–217.CrossRefGoogle Scholar
  31. [31]
    Ye, D.; Raghnaill, M. N.; Bramini, M.; Mahon, E.; Åberg, C.; Salvati, A.; Dawson, K. A. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale, 2013, 5, 11153–11165.CrossRefGoogle Scholar
  32. [32]
    Soto, C.; Sigurdsson, E. M.; Morelli, L.; Kumar, R. A.; Castano, E. M.; Frangione, B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat. Med. 1998, 4, 822–826.CrossRefGoogle Scholar
  33. [33]
    Xiong, L. Q.; Yang, T. S.; Yang, Y.; Xu, C. J.; Li, F. Y. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010, 31, 7078–7085.CrossRefGoogle Scholar
  34. [34]
    Yu, H. J.; Ren, J. S.; Qu, X. G. Time-dependent DNA condensation induced by amyloid β-peptide. Biophys. J. 2007, 92, 185–191.CrossRefGoogle Scholar
  35. [35]
    Geng, J.; Zhao, C.; Ren, J.; Qu, X. Alzheimer’s disease amyloid beta converting left-handed Z-DNA back to righthanded B-form. Chem. Commun. 2010, 46, 7187–7189.CrossRefGoogle Scholar
  36. [36]
    Geng, J.; Qu, K. G.; Ren, J. S.; Qu, X. G. Rapid and efficient screening of Alzheimer’s disease β-amyloid inhibitors using label-free gold nanoparticles. Mol. BioSyst. 2010, 6, 2389–2391.CrossRefGoogle Scholar
  37. [37]
    Zhang, G. J.; Keita, B.; Biboum, R. N.; Miserque, F.; Berthet, P.; Dolbecq, A.; Mialane, P.; Catalae, L.; Nadjo, L. Synthesis of various crystalline gold nanostructures in water: The polyoxometalate β-[H4PMo12O40]3– as the reducing and stabilizing agent. J. Mater. Chem. 2009, 19, 8639–8644.CrossRefGoogle Scholar
  38. [38]
    Yiu, H. H. P.; Wright, P. A.; Botting, N. P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B: Enzym. 2001, 15, 81–92.CrossRefGoogle Scholar
  39. [39]
    Adachi, T.; Marklund, S. L. Interactions between human extracellular superoxide dismutase C and sulfated polysaccharides. J. Biol. Chem. 1989, 264, 8537–8541.Google Scholar
  40. [40]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision B. 01; Gaussian, Inc.: Wallingford, CT, 2009.Google Scholar
  41. [41]
    Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.CrossRefGoogle Scholar
  42. [42]
    Becker, A. D. A new mixing of hartree-fock and local densityfunctional theories. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  43. [43]
    Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  44. [44]
    Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.CrossRefGoogle Scholar
  45. [45]
    Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998, 286, 253–260.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nan Gao
    • 1
  • Kai Dong
    • 1
  • Andong Zhao
    • 1
  • Hanjun Sun
    • 1
  • Ying Wang
    • 1
  • Jinsong Ren
    • 1
  • Xiaogang Qu
    • 1
    Email author
  1. 1.Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesChangchunChina

Personalised recommendations