Nano Research

, Volume 9, Issue 1, pp 165–173 | Cite as

Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries

  • Chun Wang
  • Faxing Wang
  • Yujuan Zhao
  • Yuhui Li
  • Qin Yue
  • Yupu Liu
  • Yong Liu
  • Ahmed A. Elzatahry
  • Abdullah Al-Enizi
  • Yuping Wu
  • Yonghui Deng
  • Dongyuan Zhao
Research Article


Hollow TiO2–X porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and two-step carbonprotected calcination method, together with hydrogenation treatment. They exhibit a uniform diameter of ~470 nm with a thin porous wall shell of ~50 nm in thickness. The Brunauer-Emmett-Teller (BET) surface area and pore volume are ~19 m2/g and 0.07 cm3/g, respectively. These hollow TiO2–X porous microspheres demonstrated excellent lithium storage performance with stable capacity retention for over 300 cycles (a high capacity of 151 mAh/g can be obtained up to 300 cycles at 1 C, retaining 81.6% of the initial capacity of 185 mAh/g) and enhanced rate capability even up to 10 C (222, 192, 121, and 92.1 mAh/g at current rates of 0.5, 1, 5, and 10 C, respectively). The intrinsic increased conductivity of the hydrogenated TiO2 microspheres and their robust hollow structure beneficial for lithium ion-electron diffusion and mitigating the structural strain synergistically contribute to the remarkable improvements in their cycling stability and rate performance.


titania hydrogenation porous wall hollow microspheres lithium-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_976_MOESM1_ESM.pdf (7.3 mb)
Supplementary material, approximately 7436 KB.


  1. [1]
    Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  3. [3]
    Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  4. [4]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  5. [5]
    Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.CrossRefGoogle Scholar
  6. [6]
    Chen, Z. H.; Qin, Y.; Ren, Y.; Lu, W. Q.; Orendorff, C.; Roth, E. P.; Amine, K. Multi-scale study of thermal stability of lithiated graphite. Energy Environ. Sci. 2011, 4, 4023–4030.CrossRefGoogle Scholar
  7. [7]
    Chen, Z. H.; Belharouak, I.; Sun, Y.-K.; Amine, K. Titaniumbased anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 959–969.CrossRefGoogle Scholar
  8. [8]
    Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.CrossRefGoogle Scholar
  9. [9]
    Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.CrossRefGoogle Scholar
  10. [10]
    Xin, L.; Liu, Y.; Li, B. J.; Zhou, X.; Shen, H.; Zhao, W. X.; Liang, C. L. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci. Rep. 2014, 4, 4479.Google Scholar
  11. [11]
    Song, L. H.; Li, L.; Gao, X.; Zhao, J. X.; Lu, T.; Liu, Z. A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J. Mater. Chem. A, 2015, 3, 6862–6872.CrossRefGoogle Scholar
  12. [12]
    Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.CrossRefGoogle Scholar
  13. [13]
    Zeng, L. X.; Zheng, C.; Xia, L. C.; Wang, Y. X.; Wei, M. D. Ordered mesoporous TiO2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A, 2013, 1, 4293–4299.CrossRefGoogle Scholar
  14. [14]
    Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Carbonsupported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 2011, 21, 5687–5692.CrossRefGoogle Scholar
  15. [15]
    Moriguchi, I.; Hidaka, R.; Yamada, H.; Kudo, T.; Murakami, H.; Nakashima, N. A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater. 2006, 18, 69–73.CrossRefGoogle Scholar
  16. [16]
    Cao, F.-F.; Guo, Y.-G.; Zheng, S.-F.; Wu, X.-L.; Jiang, L.-Y.; Bi, R.-R.; Wan, L.-J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 2010, 22, 1908–1914.CrossRefGoogle Scholar
  17. [17]
    Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.CrossRefGoogle Scholar
  18. [18]
    Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H.-M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by templatefree self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.CrossRefGoogle Scholar
  19. [19]
    Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphenebased titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.CrossRefGoogle Scholar
  20. [20]
    Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.CrossRefGoogle Scholar
  21. [21]
    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  22. [22]
    Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.CrossRefGoogle Scholar
  23. [23]
    Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.CrossRefGoogle Scholar
  24. [24]
    Jeong, G.; Kim, J.-G.; Park, M.-S.; Seo, M.; Hwang, S. M.; Kim, Y.-U.; Kim, Y.-J.; Kim, J. H.; Dou, S. X. Core–shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 2014, 8, 2977–2985.CrossRefGoogle Scholar
  25. [25]
    Wang, J.; Shen, L. F.; Nie, P.; Xu, G. Y.; Ding, B.; Fang, S.; Dou, H.; Zhang, X. G. Synthesis of hydrogenated TiO2- reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. A, 2014, 2, 9150–9155.CrossRefGoogle Scholar
  26. [26]
    Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.CrossRefGoogle Scholar
  27. [27]
    Li, G. C.; Zhang, Z. H.; Peng, H. R.; Chen, K. Z. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 2013, 3, 11507–11510.CrossRefGoogle Scholar
  28. [28]
    Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A, 2013, 1, 14507–14513.CrossRefGoogle Scholar
  29. [29]
    Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826–835.CrossRefGoogle Scholar
  30. [30]
    Xia, T.; Chen, X. B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A, 2013, 1, 2983–2989.CrossRefGoogle Scholar
  31. [31]
    Lu, Z. G.; Yip, C.-T.; Wang, L. P.; Huang, H. T.; Zhou, L. M. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 2012, 77, 991–1000.CrossRefGoogle Scholar
  32. [32]
    Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.CrossRefGoogle Scholar
  33. [33]
    Shin, J.-Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.CrossRefGoogle Scholar
  34. [34]
    Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Qiao, C. S.; Yang, L.; Hirano, S.-I. Facile template-free preparation of hierarchical TiO2 hollow microspheres assembled by nanocrystals and their superior cycling performance as anode materials for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 10829–10836.CrossRefGoogle Scholar
  35. [35]
    Gao, X. H.; Li, G. R.; Xu, Y. Y.; Hong, Z. L.; Liang, C. D.; Lin, Z. TiO2 microboxes with controlled internal porosity for high-performance lithium storage. Angew. Chem., Int. Ed. 2015, 54, 14331–14335.CrossRefGoogle Scholar
  36. [36]
    Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Le Tam, H.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111–6118.CrossRefGoogle Scholar
  37. [37]
    Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.Google Scholar
  38. [38]
    Xiao, L.; Cao, M. L.; Mei, D. D.; Guo, Y. L.; Yao, L. F.; Qu, D. Y.; Deng, B. H. Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 2013, 238, 197–202.CrossRefGoogle Scholar
  39. [39]
    Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.CrossRefGoogle Scholar
  40. [40]
    Ming, J.; Wu, Y. Q.; Nagarajan, S.; Lee, D.-J.; Sun, Y.-K.; Zhao, F. Y. Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. J. Mater. Chem. 2012, 22, 22135–22141.CrossRefGoogle Scholar
  41. [41]
    Wang, J. P.; Bai, Y.; Wu, M. Y.; Yin, J.; Zhang, W. F. Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J. Power Sources 2009, 191, 614–618.CrossRefGoogle Scholar
  42. [42]
    Wang, Y.; Su, X. W.; Lu, S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J. Mater. Chem. 2012, 22, 1969–1976.CrossRefGoogle Scholar
  43. [43]
    Yu, X.-Y.; Wu, H. B.; Yu, L.; Ma, F.-X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.CrossRefGoogle Scholar
  44. [44]
    Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci. 2015, 8, 1480–1483.CrossRefGoogle Scholar
  45. [45]
    Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem., Int. Ed. 2011, 50, 5947–5951.CrossRefGoogle Scholar
  46. [46]
    Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.CrossRefGoogle Scholar
  47. [47]
    Li, W.; Liu, M. B.; Feng, S. S.; Li, X. M.; Wang, J. X.; Shen, D. K.; Li, Y. H.; Sun, Z. K.; Elzatahry, A. A.; Lu, H. J. et al. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 2014, 1, 439–445.CrossRefGoogle Scholar
  48. [48]
    Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.CrossRefGoogle Scholar
  49. [49]
    Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174.CrossRefGoogle Scholar
  50. [50]
    Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z.-S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.CrossRefGoogle Scholar
  51. [51]
    Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.CrossRefGoogle Scholar
  52. [52]
    Liu, H. Y.; Joo, J. B.; Dahl, M.; Fu, L. S.; Zeng, Z. Z.; Yin, Y. D. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.CrossRefGoogle Scholar
  53. [53]
    Kim, G.; Jo, C.; Kim, W.; Chun, J.; Yoon, S.; Lee, J.; Choi, W. TiO2 nanodisks designed for Li-ion batteries: A novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy Environ. Sci. 2013, 6, 2932–2938.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chun Wang
    • 1
  • Faxing Wang
    • 1
  • Yujuan Zhao
    • 1
  • Yuhui Li
    • 1
  • Qin Yue
    • 1
  • Yupu Liu
    • 1
  • Yong Liu
    • 1
  • Ahmed A. Elzatahry
    • 2
  • Abdullah Al-Enizi
    • 3
  • Yuping Wu
    • 1
  • Yonghui Deng
    • 1
  • Dongyuan Zhao
    • 1
  1. 1.Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiChina
  2. 2.Materials Science and Technology Program, College of Arts and SciencesQatar UniversityDohaQatar
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations