Nano Research

, Volume 9, Issue 1, pp 28–46 | Cite as

A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction

Research Article

Abstract

High gravimetric energy density, earth-abundance, and environmental friendliness of hydrogen sources have inspired the utilization of hydrogen fuel as a clean alternative to fossil fuels. Hydrogen evolution reaction (HER), a half reaction of water splitting, is crucial to the low-cost production of pure H2 fuels but necessitates the use of electrocatalysts to expedite reaction kinetics. Owing to the availability of low-cost oxygen evolution reaction (OER) catalysts for the counter electrode in alkaline media and the lack of low-cost OER catalysts in acidic media, researchers have focused on developing HER catalysts in alkaline media with high activity and stability. Nickel is well-known as an HER catalyst and continuous efforts have been undertaken to improve Ni-based catalysts as alkaline electrolyzers. In this review, we summarize earlier studies of HER activity and mechanism on Ni surfaces, along with recent progress in the optimization of the Ni-based catalysts using various modern techniques. Recently developed Ni-based HER catalysts are categorized according to their chemical nature, and the advantages as well as limitations of each category are discussed. Among all Ni-based catalysts, Ni-based alloys and Ni-based hetero-structure exhibit the most promising electrocatalytic activity and stability owing to the fine-tuning of their surface adsorption properties via a synergistic nearby element or domain. Finally, selected applications of the developed Ni-based HER catalysts are highlighted, such as water splitting, the chloralkali process, and microbial electrolysis cell.

Keywords

hydrogen evolution reaction nickel alkaline electrolyzer catalyst 

References

  1. [1]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  2. [2]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.CrossRefGoogle Scholar
  3. [3]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  4. [4]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  5. [5]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.CrossRefGoogle Scholar
  6. [6]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  7. [7]
    Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.CrossRefGoogle Scholar
  8. [8]
    Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Physics Today 2004, 57, 39–44.CrossRefGoogle Scholar
  9. [9]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  10. [10]
    Häussinger, P.; Lohmü ller, R.; Watson, A. M. Hydrogen. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000.Google Scholar
  11. [11]
    Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on pem water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.CrossRefGoogle Scholar
  12. [12]
    Gong, M.; Dai, H. J. A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.Google Scholar
  13. [13]
    Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.CrossRefGoogle Scholar
  14. [14]
    Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.CrossRefGoogle Scholar
  15. [15]
    Lasia, A. Hydrogen evolution reaction. In Handbook of Fuel Cells; John Wiley & Sons: New York, 2010.CrossRefGoogle Scholar
  16. [16]
    Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M. Electrocatalysis of the her in acid and alkaline media. J. Serb. Chem. Soc. 2013, 78, 2007–2015.CrossRefGoogle Scholar
  17. [17]
    Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.Google Scholar
  18. [18]
    Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nø rskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.CrossRefGoogle Scholar
  19. [19]
    Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nø rskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.CrossRefGoogle Scholar
  20. [20]
    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.CrossRefGoogle Scholar
  21. [21]
    Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.CrossRefGoogle Scholar
  22. [22]
    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.CrossRefGoogle Scholar
  23. [23]
    Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.CrossRefGoogle Scholar
  24. [24]
    Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.CrossRefGoogle Scholar
  25. [25]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  26. [26]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  27. [27]
    Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860–7863.CrossRefGoogle Scholar
  28. [28]
    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.CrossRefGoogle Scholar
  29. [29]
    Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118, 21347–21356.CrossRefGoogle Scholar
  30. [30]
    Gao, M.-R.; Cao, X.; Gao, Q.; Xu, Y.-F.; Zheng, Y.-R.; Jiang, J.; Yu, S.-H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.CrossRefGoogle Scholar
  31. [31]
    Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.Google Scholar
  32. [32]
    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.CrossRefGoogle Scholar
  33. [33]
    Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. 2014, 126, 5531–5534.CrossRefGoogle Scholar
  34. [34]
    Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.CrossRefGoogle Scholar
  35. [35]
    Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.CrossRefGoogle Scholar
  36. [36]
    Wang, D.-Y.; Gong, M.; Chou, H.-L.; Pan, C.-J.; Chen, H.-A.; Wu, Y. P.; Lin, M.-C.; Guan, M. Y.; Yang, J.; Chen, C.-W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS 2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592.CrossRefGoogle Scholar
  37. [37]
    Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666.CrossRefGoogle Scholar
  38. [38]
    Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027.CrossRefGoogle Scholar
  39. [39]
    Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.CrossRefGoogle Scholar
  40. [40]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  41. [41]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  42. [42]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  43. [43]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  44. [44]
    Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.CrossRefGoogle Scholar
  45. [45]
    Lu, Z. Y.; Wang, H. T.; Kong, D.; Yan, K.; Hsu, P.-C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.Google Scholar
  46. [46]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.Google Scholar
  47. [47]
    Davis, J. R. Nickel, Cobalt, and Their Alloys; ASM international: Materials Park, OH, 2000.Google Scholar
  48. [48]
    Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. Lond. A 1909, 82, 172–175.CrossRefGoogle Scholar
  49. [49]
    Fournier, J.; Brossard, L.; Tilquin, J. Y.; Coté, R.; Dodelet, J. P.; Guay, D.; Mé nard, H. Hydrogen evolution reaction in alkaline solution: Catalytic influence of pt supported on graphite vs. Pt inclusions in graphite. J. Electrochem. Soc. 1996, 143, 919–926.CrossRefGoogle Scholar
  50. [50]
    Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.CrossRefGoogle Scholar
  51. [51]
    Devanathan, M. A. V.; Selvaratnam, M. Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans. Faraday Soc. 1960, 56, 1820–1831.CrossRefGoogle Scholar
  52. [52]
    Miles, M.; Kissel, G.; Lu, P. W. T.; Srinivasan, S. Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. J. Electrochem. Soc. 1976, 123, 332–336.CrossRefGoogle Scholar
  53. [53]
    Krstajic, N.; Popovic, M.; Grgur, B.; Vojnović, M.; Šepa, D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 2001, 512, 16–26.CrossRefGoogle Scholar
  54. [54]
    Diard, J.-P.; LeGorrec, B.; Maximovitch, S. Etude de l’activation du degagement d’hydrogene sur electrode d’oxyde de nickel par spectroscopie d’impedance. Electrochim. Acta 1990, 35, 1099–1108.CrossRefGoogle Scholar
  55. [55]
    Kreysa, G.; Hakansson, B.; Ekdunge, P. Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes. Electrochim. Acta 1988, 33, 1351–1357.CrossRefGoogle Scholar
  56. [56]
    LeRoy, R. L.; Janjua, M. B. I.; Renaud, R.; Leuenberger, U. Analysis of time-variation effects in water electrolyzers. J. Electrochem. Soc. 1979, 126, 1674–1682.CrossRefGoogle Scholar
  57. [57]
    Soares, D. M.; Teschke, O.; Torriani, I. Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. J. Electrochem. Soc. 1992, 139, 98–105.CrossRefGoogle Scholar
  58. [58]
    Bernardini, M.; Comisso, N.; Davolio, G.; Mengoli, G. Formation of nickel hydrides by hydrogen evolution in alkaline media. J. Electroanal. Chem. 1998, 442, 125–135.CrossRefGoogle Scholar
  59. [59]
    Weininger, J. L.; Breiter, M. W. Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J. Electrochem. Soc. 1964, 111, 707–712.CrossRefGoogle Scholar
  60. [60]
    Raveendran, P.; Fu, J.; Wallen, S. L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941.CrossRefGoogle Scholar
  61. [61]
    Grzelczak, M.; Pé rez-Juste, J.; Mulvaney, P.; Liz-Marzá n, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.CrossRefGoogle Scholar
  62. [62]
    Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.CrossRefGoogle Scholar
  63. [63]
    Lin, Y.-Y.; Wang, D.-Y.; Yen, H.-C.; Chen, H.-L.; Chen, C.-C.; Chen, C.-M.; Tang, C.-Y.; Chen, C.-W. Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 2009, 20, 405207.Google Scholar
  64. [64]
    Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W. Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to nir photodetection. Adv. Mater. 2012, 24, 3415–3420.CrossRefGoogle Scholar
  65. [65]
    Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698.CrossRefGoogle Scholar
  66. [66]
    Chen, D.-H.; Wu, S.-H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 2000, 12, 1354–1360.CrossRefGoogle Scholar
  67. [67]
    Wu, S.-H.; Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interf. Sci. 2003, 259, 282–286.CrossRefGoogle Scholar
  68. [68]
    Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A: Gen. 2010, 385, 201–207.CrossRefGoogle Scholar
  69. [69]
    Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.CrossRefGoogle Scholar
  70. [70]
    Gong, M.; Li, Y. G.; Zhang, H. B.; Zhang, B.; Zhou, W.; Feng, J.; Wang, H. L.; Liang, Y. Y.; Fan, Z. J.; Liu, J. et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci 2014, 7, 2025–2032.CrossRefGoogle Scholar
  71. [71]
    Zhou, H. H.; Peng, C. Y.; Jiao, S. Q.; Zeng, W.; Chen, J. H.; Kuang, Y. F. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun. 2006, 8, 1142–1146.CrossRefGoogle Scholar
  72. [72]
    Hang, T.; Hu, A. M.; Ling, H. Q.; Li, M.; Mao, D. L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl. Surf. Sci. 2010, 256, 2400–2404.CrossRefGoogle Scholar
  73. [73]
    Ahn, S. H.; Hwang, S. J.; Yoo, S. J.; Choi, I.; Kim, H.-J.; Jang, J. H.; Nam, S. W.; Lim, T.-H.; Lim, T.; Kim, S.-K. et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J. Mater. Chem. 2012, 22, 15153–15159.CrossRefGoogle Scholar
  74. [74]
    McArthur, M. A.; Jorge, L.; Coulombe, S.; Omanovic, S. Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J. Power Sources 2014, 266, 365–373.CrossRefGoogle Scholar
  75. [75]
    Brown, D. E.; Mahmood, M. N.; Man, M. C. M.; Turner, A. K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 1984, 29, 1551–1556.CrossRefGoogle Scholar
  76. [76]
    Raj, I. A.; Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution—Electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 1990, 20, 32–38.CrossRefGoogle Scholar
  77. [77]
    Raj, I. A.; Vasu, K. I. Transition metal-based cathodes for hydrogen evolution in alkaline solution: Electrocatalysis on nickel-based ternary electrolytic codeposits. J. Appl. Electrochem. 1992, 22, 471–477.CrossRefGoogle Scholar
  78. [78]
    Angelo, A. C. D.; Lasia, A. Surface effects in the hydrogen evolution reaction on Ni–Zn alloy electrodes in alkaline solutions. J. Electrochem. Soc. 1995, 142, 3313–3319.CrossRefGoogle Scholar
  79. [79]
    Lupi, C.; Dell’Era, A.; Pasquali, M. Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrogen Energy 2009, 34, 2101–2106.CrossRefGoogle Scholar
  80. [80]
    Dong, H. X.; Lei, T.; He, Y. H.; Xu, N. P.; Huang, B. Y.; Liu, C. T. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy 2011, 36, 12112–12120.CrossRefGoogle Scholar
  81. [81]
    McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166–169.CrossRefGoogle Scholar
  82. [82]
    Campbell, J. A.; Whiteker, R. A. A periodic table based on potential–pH diagrams. J. Chem. Educ. 1969, 46, 90.Google Scholar
  83. [83]
    Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grä tzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRefGoogle Scholar
  84. [84]
    Wang, H. T.; Lee, H.-W.; Deng, Y.; Lu, Z. Y.; Hsu, P.-C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.CrossRefGoogle Scholar
  85. [85]
    Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.CrossRefGoogle Scholar
  86. [86]
    Han, Q.; Liu, K. R.; Chen, J. S.; Wei, X. J. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int. J. Hydrogen Energy 2003, 28, 1207–1212.CrossRefGoogle Scholar
  87. [87]
    Paseka, I. Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni–P(x) electrodes. Electrochim. Acta 1995, 40, 1633–1640.CrossRefGoogle Scholar
  88. [88]
    Burchardt, T. Hydrogen evolution on NiPx alloys: The influence of sorbed hydrogen. Int. J. Hydrogen Energy 2001, 26, 1193–1198.CrossRefGoogle Scholar
  89. [89]
    Feng, L. G.; Vrubel, H.; Bensimon, M.; Hu, X. L. Easilyprepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921.CrossRefGoogle Scholar
  90. [90]
    Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2014, 2, 18593–18599.CrossRefGoogle Scholar
  91. [91]
    Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.CrossRefGoogle Scholar
  92. [92]
    Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 2012, 124, 12663–12666.CrossRefGoogle Scholar
  93. [93]
    Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J. G.; Guan, M. Y.; Lin, M.-C.; Zhang, B.; Hu, Y. F.; Wang, D.-Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.CrossRefGoogle Scholar
  94. [94]
    Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. G.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO–Ni electrocatalyst for sustained water splitting. Angew. Chem. 2015, 127, 12157–12161.CrossRefGoogle Scholar
  95. [95]
    Duby, P. The history of progress in dimensionally stable anodes. JOM 1993, 45, 41–43.CrossRefGoogle Scholar
  96. [96]
    Yoshida, N.; Morimoto, T. A new low hydrogen overvoltage cathode for chlor–alkali electrolysis cell. Electrochim. Acta 1994, 39, 1733–1737.Google Scholar
  97. [97]
    Pilla, A. S.; Cobo, E. O.; Duarte, M. M. E.; Salinas, D. R. Evaluation of anode deactivation in chlor–alkali cells. J. Appl. Electrochem. 1997, 27, 1283–1289.CrossRefGoogle Scholar
  98. [98]
    Jiang, N.; Meng, H.-M.; Song, L.-J.; Yu, H.-Y. Study on Ni–Fe–C cathode for hydrogen evolution from seawater electrolysis. Int. J. Hydrogen Energy 2010, 35, 8056–8062.CrossRefGoogle Scholar
  99. [99]
    Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.CrossRefGoogle Scholar
  100. [100]
    Feng, J.; Gong, M.; Kenney, M. J.; Wu, J. Z.; Zhang, B.; Li, Y. G.; Dai, H. J. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res. 2015, 8, 1577–1583.CrossRefGoogle Scholar
  101. [101]
    McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583.CrossRefGoogle Scholar
  102. [102]
    Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 2006, 31, 1632–1640.CrossRefGoogle Scholar
  103. [103]
    Logan, B. E.; Call, D.; Cheng, S. A.; Hamelers, H. V. M.; Sleutels, T. H. J. A.; Jeremiasse, A. W.; Rozendal, R. A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42, 8630–8640.CrossRefGoogle Scholar
  104. [104]
    Selembo, P. A.; Merrill, M. D.; Logan, B. E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy 2010, 35, 428–437.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Chemistry“National Taiwan Normal University”TaipeiTaiwan, China
  3. 3.Institute of Atomic and Molecular Science“Academia Sinica”TaipeiTaiwan, China
  4. 4.Department of Chemical Engineering“National Taiwan University of Science and Technology”TaipeiTaiwan, China

Personalised recommendations