Advertisement

Nano Research

, Volume 9, Issue 3, pp 849–856 | Cite as

A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties

  • Yaqi JiangEmail author
  • Jingyun Su
  • Yanan Yang
  • Yanyan Jia
  • Qiaoli Chen
  • Zhaoxiong XieEmail author
  • Lansun Zheng
Research Article

Abstract

Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flowerlike structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of ~1.1 nm. The specific surface area measured by CO stripping was 79.3 m2·g−1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces.

Keywords

rhodium nanocrystal nanosheet hydrogenation reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_964_MOESM1_ESM.pdf (2.3 mb)
Supplementary material, approximately 2334 KB.

References

  1. [1]
    Mu, X. D.; Meng, J. X.; Li, Z. C.; Kou, Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: Long lifetime nanocluster catalysts for benzene hydrogenation. J. Am. Chem. Soc. 2005, 127, 9694–9695.CrossRefGoogle Scholar
  2. [2]
    Dykeman, R. R.; Yan, N.; Scopelliti, R.; Dyson, P. J. Enhanced rate of arene hydrogenation with imidazolium functionalized bipyridine stabilized rhodium nanoparticle catalysts. Inorg. Chem. 2011, 50, 717–719.CrossRefGoogle Scholar
  3. [3]
    Park, K. H.; Jang, K.; Kim, H. J.; Uk Son, S. Nearmonodisperse tetrahedral rhodium nanoparticles on charcoal: The shape-dependent catalytic hydrogenation of arenes. Angew. Chem., Int. Ed. 2007, 46, 1152–1155.CrossRefGoogle Scholar
  4. [4]
    Dahal, N.; García, S.; Zhou, J. P.; Humphrey, S. M. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012, 6, 9433–9446.CrossRefGoogle Scholar
  5. [5]
    Quek, X. Y.; Guan, Y. J.; Hensen, E. J. M. Structure sensitivity in the hydrogenation of unsaturated hydrocarbons over Rh nanoparticles. Catal. Today 2012, 183, 72–78.CrossRefGoogle Scholar
  6. [6]
    Yoon, B.; Wai, C. M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J. Am. Chem. Soc. 2005, 127, 17174–17175.CrossRefGoogle Scholar
  7. [7]
    Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.CrossRefGoogle Scholar
  8. [8]
    Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal–organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.CrossRefGoogle Scholar
  9. [9]
    Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle core and stabilizer. ACS Catal. 2012, 2, 1057–1069.CrossRefGoogle Scholar
  10. [10]
    Sun, Z.; Wang, Y. H.; Niu, M. M.; Yi, H. Q.; Jiang, J. Y.; Jin, Z. L. Poly(ethylene glycol)-stabilized Rh nanoparticles as efficient and recyclable catalysts for hydroformylation of olefins. Catal. Commun. 2012, 27, 78–82.CrossRefGoogle Scholar
  11. [11]
    Zhang, Y. W.; Grass, M. E.; Huang, W. Y.; Somorjai, G. A. Seedless polyol synthesis and COoxidation activity of monodisperse (111)-and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. Langmuir 2010, 26, 16463–16468.CrossRefGoogle Scholar
  12. [12]
    Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in COoxidation. CrystEngComm 2013, 15, 6127–6130.CrossRefGoogle Scholar
  13. [13]
    Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. A reactive oxide overlayer on rhodium nanoparticles during COoxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectronspectroscopy. Angew. Chem., Int. Ed. 2008, 47, 8893–8896.CrossRefGoogle Scholar
  14. [14]
    Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.Google Scholar
  15. [15]
    Muench, F.; Neetzel, C.; Kaserer, S.; Brötz, J.; Jaud, J. C.; Zhao-Karger, Z.; Lauterbach, S.; Kleebe, H. J.; Roth, C.; Ensinger, W. Fabrication of porous rhodium nanotube catalysts by electroless plating. J. Mater. Chem. 2012, 22, 12784–12791.CrossRefGoogle Scholar
  16. [16]
    Li, Y. Y.; Dian, P.; Jin, T.; Sun, J. S.; Xu, D. Shapecontrolled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim. Acta 2012, 83, 146–154.CrossRefGoogle Scholar
  17. [17]
    Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.CrossRefGoogle Scholar
  18. [18]
    Jia, Y. Y.; Cao, Z. M.; Chen, Q. L.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of composition-tunable octahedral Pt–Cu alloy nanocrystals by controlling reduction kinetics of metal precursors. Sci. Bull. 2015, 60, 1002–1008.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y. W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P. D.; Somorjai, G. A. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 2008, 130, 5868–5869.CrossRefGoogle Scholar
  20. [20]
    Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.CrossRefGoogle Scholar
  21. [21]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  22. [22]
    Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; Xie, S. F.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.CrossRefGoogle Scholar
  23. [23]
    Zhang, J. W.; Hou, C. P.; Huang, H.; Zhang, L.; Jiang, Z. Y.; Chen, G. X.; Jia, Y. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538–544.CrossRefGoogle Scholar
  24. [24]
    Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602–613.CrossRefGoogle Scholar
  25. [25]
    Chen, Y. M.; Chen, Q.-S.; Peng, S.-Y.; Wang, Z.-Q.; Lu, G.; Guo, G.-C. Manipulating the concavity of rhodium nanocubes enclosed by high-index facets via site-selective etching. Chem. Commun. 2014, 50, 1662–1664.CrossRefGoogle Scholar
  26. [26]
    Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898–903.CrossRefGoogle Scholar
  27. [27]
    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.CrossRefGoogle Scholar
  28. [28]
    Hu, C. Y.; Lin, K. Q.; Wang, X. L.; Liu, S. J.; Yi, J.; Tian, Y.; Wu, B. H.; Chen, G. X.; Yang, H. Y.; Dai, Y. et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J. Am. Chem. Soc. 2014, 136, 12856–12859.CrossRefGoogle Scholar
  29. [29]
    Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292–297.CrossRefGoogle Scholar
  30. [30]
    Yin, A. X.; Liu, W. C.; Ke, J.; Hu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surfaceenhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.CrossRefGoogle Scholar
  31. [31]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.CrossRefGoogle Scholar
  32. [32]
    Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271–1276.CrossRefGoogle Scholar
  33. [33]
    Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.Google Scholar
  34. [34]
    Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.CrossRefGoogle Scholar
  35. [35]
    Sathe, B. R. High aspect ratio rhodium nanostructures for tunable electrocatalytic performance. Phys. Chem. Chem. Phys. 2013, 15, 7866–7872.CrossRefGoogle Scholar
  36. [36]
    Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.CrossRefGoogle Scholar
  37. [37]
    Kuhn, J. N.; Tsung, C. K.; Huang, W. Y.; Somorjai, G. A. Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 2009, 265, 209–215.CrossRefGoogle Scholar
  38. [38]
    Li, Y.; El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 2001, 105, 8938–8943.CrossRefGoogle Scholar
  39. [39]
    Lee, H.; Kim, C.; Yang, S.; Han, J. W; Kim, J. Shapecontrolled nanocrystals for catalytic applications. Catal. Surv. Asia 2012, 16, 14–27.CrossRefGoogle Scholar
  40. [40]
    Monzó, J.; Koper, M. T. M.; Rodriguez, P. Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order. ChemPhysChem 2012, 13, 709–715.CrossRefGoogle Scholar
  41. [41]
    Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.CrossRefGoogle Scholar
  42. [42]
    Chen, Y.; Gu, X.; Nie, C. G.; Jiang, Z. Y.; Xie, Z. X.; Lin, C. J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. 2005, (33), 4181–4183.CrossRefGoogle Scholar
  43. [43]
    Pan, Y. T.; Yin, X.; Kwok, K. S.; Yang, H. Higher-order nanostructures of two-dimensional palladium nanosheets for fast hydrogen sensing. Nano Lett. 2014, 14, 5953–5959.CrossRefGoogle Scholar
  44. [44]
    Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.CrossRefGoogle Scholar
  45. [45]
    Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P.; Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.CrossRefGoogle Scholar
  46. [46]
    World Health Organization. Formaldehyde: Health and safety guide [Online]. IPCS International programme on chemical safety: Health and safety guide No. 57. http://www.inchem.org/documents/hsg/hsg/hsg057.htm (accessed Sep 14, 2015).Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations