Nano Research

, Volume 9, Issue 3, pp 808–819 | Cite as

Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction

Research Article

Abstract

Nitrogen-doped graphene (NG) was successfully synthesized by a novel, facile, and scalable bottom-up method. The annealed NG (NG-A) possessed high specific surface area and a hierarchical porous texture, and exhibited remarkably improved electrocatalytic activity in the oxygen reduction reaction in both alkaline and acidic media. Ab initio molecular dynamic simulations indicated that rapid H transfer and the thermodynamic stability of six-membered N structures promoted the transformation of N-containing species from pyrrolic to pyridinic at 600 °C. In O2-staturated 0.1 M KOH solution, the half-wave potential (E1/2) of NG-A was only 62 mV lower than that of a commercial Pt/C catalyst, and the limiting current density of NG-A was 0.5 mA·cm–2 larger than that of Pt/C. Koutecky–Levich (K–L) plots and rotating ring-disk electrode measurement indicated a four-electron-transfer pathway in NG-A, which could be ascribed to its high content of pyridinic N.

Keywords

nitrogen doping graphene molecular dynamic simulation oxygen reduction reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_960_MOESM1_ESM.pdf (1.9 mb)
Supplementary material, approximately 1983 KB.

References

  1. [1]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.CrossRefGoogle Scholar
  4. [4]
    Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.CrossRefGoogle Scholar
  5. [5]
    Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar
  6. [6]
    Lee, D. U.; Kim, B. J.; Chen, Z. W. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J. Mater. Chem. A 2013, 1, 4754–4762.CrossRefGoogle Scholar
  7. [7]
    Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interfaces 2014, 6, 12684–12691.CrossRefGoogle Scholar
  8. [8]
    Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.CrossRefGoogle Scholar
  9. [9]
    Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625–3637.CrossRefGoogle Scholar
  10. [10]
    Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.CrossRefGoogle Scholar
  11. [11]
    Xia, B. Y.; Yan, Y.; Wang, X.; Lou, X. W. Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz. 2014, 1, 379–399.CrossRefGoogle Scholar
  12. [12]
    Wu, Z.-S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H.-M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 2010, 3, 16–22.CrossRefGoogle Scholar
  13. [13]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.CrossRefGoogle Scholar
  14. [14]
    Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.CrossRefGoogle Scholar
  15. [15]
    Zheng, B.; Wang, J.; Wang, F.-B.; Xia, X.-H. Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochem. Commun. 2013, 28, 24–26.CrossRefGoogle Scholar
  16. [16]
    Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  17. [17]
    Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  18. [18]
    Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241–248.CrossRefGoogle Scholar
  19. [19]
    Favaro, M.; Ferrighi, L.; Fazio, G.; Colazzo, L.; Di Valentin, C.; Durante, C.; Sedona, F.; Gennaro, A.; Agnoli, S.; Granozzi, G. Single and multiple doping in graphene quantum dots: Unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal. 2015, 5, 129–144.CrossRefGoogle Scholar
  20. [20]
    Ito, Y.; Qiu, H. J.; Fujita, T.; Tanabe, Y.; Tanigaki, K.; Chen, M. W. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 2014, 26, 4145–4150.CrossRefGoogle Scholar
  21. [21]
    Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  22. [22]
    Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.CrossRefGoogle Scholar
  23. [23]
    Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.CrossRefGoogle Scholar
  24. [24]
    Subramanian, N. P.; Li, X. G.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.; Wu, G.; Lee, J.-W.; Popov, B. N. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Power Sources 2009, 188, 38–44.CrossRefGoogle Scholar
  25. [25]
    Sosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.CrossRefGoogle Scholar
  26. [26]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  27. [27]
    Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  28. [28]
    Lin, T. Q.; Huang, F. Q.; Liang, J.; Wang, Y. X. A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy Environ. Sci. 2011, 4, 862–865.CrossRefGoogle Scholar
  29. [29]
    Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward Ndoped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.CrossRefGoogle Scholar
  30. [30]
    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefGoogle Scholar
  31. [31]
    Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.CrossRefGoogle Scholar
  32. [32]
    Yang, H. M.; Cui, X. J.; Deng, Y. Q.; Shi, F. Ionic liquid templated preparation of carbon aerogels based on resorcinolformaldehyde: Properties and catalytic performance. J. Mater. Chem. 2012, 22, 21852–21856.CrossRefGoogle Scholar
  33. [33]
    Hong, X.; Zhang, L. D.; Zhang, T. C.; Qi, F. An experimental and theoretical study of pyrrole pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. J. Phys. Chem. A 2009, 113, 5397–5405.CrossRefGoogle Scholar
  34. [34]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.CrossRefGoogle Scholar
  35. [35]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  36. [36]
    Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C.-P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.CrossRefGoogle Scholar
  37. [37]
    Shao, Y. Y.; Zhang, S.; Engelhard, M. H.; Li, G. S.; Shao, G. C.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. H. Nitrogendoped graphene and its electrochemical applications. J. Mater. Chem. 2010, 20, 7491–7496.CrossRefGoogle Scholar
  38. [38]
    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.CrossRefGoogle Scholar
  39. [39]
    Saidi, W. A. Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.CrossRefGoogle Scholar
  40. [40]
    Bao, X. G.; Nie, X. W.; von Deak, D.; Biddinger, E. J.; Luo, W. J.; Asthagiri, A.; Ozkan, U. S.; Hadad, C. M. A firstprinciples study of the role of quaternary-N doping on the oxygen reduction reaction activity and selectivity of graphene edge sites. Top Catal. 2013, 56, 1623–1633.CrossRefGoogle Scholar
  41. [41]
    Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.CrossRefGoogle Scholar
  42. [42]
    Jeon, I.-Y.; Choi, H.-J.; Choi, M.; Seo, J.-M.; Jung, S.-M.; Kim, M.-J.; Zhang, S.; Zhang, L. P.; Xia, Z. H.; Dai, L. M. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3, 1810.Google Scholar
  43. [43]
    Tian, G.-L.; Zhao, M.-Q.; Yu, D. S.; Kong, X.-Y.; Huang, J.-Q.; Zhang, Q.; Wei, F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 2014, 10, 2251–2259.CrossRefGoogle Scholar
  44. [44]
    Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Twostep boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.CrossRefGoogle Scholar
  45. [45]
    Wang, J.; Wang, H.-S.; Wang, K.; Wang, F.-B.; Xia, X.-H. Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Sci. Rep. 2014, 4, 6723.CrossRefGoogle Scholar
  46. [46]
    Hancock, C. A.; Ong, A. L.; Slater, P. R.; Varcoe, J. R. Development of CaMn1-xRuxO3-y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: Ex situ testing using the rotating ring-disk electrode voltammetry method. J. Mater. Chem. A 2014, 2, 3047–3056.CrossRefGoogle Scholar
  47. [47]
    Chen, P.; Wang, L.-K.; Wang, G.; Gao, M.-R.; Ge, J.; Yuan, W.-J.; Shen, Y.-H.; Xie, A.-J.; Yu, S.-H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 4095–4103.CrossRefGoogle Scholar
  48. [48]
    Yu, D. S.; Zhang, Q.; Dai, L. M. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 2010, 132, 15127–15129.CrossRefGoogle Scholar
  49. [49]
    Zhang, L. P.; Xia, Z. H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Institute of Materials GenomeShanghaiChina
  3. 3.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations