Advertisement

Nano Research

, Volume 9, Issue 3, pp 800–807 | Cite as

Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators

  • Yongli Zhou
  • Wei LiuEmail author
  • Xin Huang
  • Aihua Zhang
  • Yan Zhang
  • Zhong Lin WangEmail author
Research Article

Abstract

Recent experiments have demonstrated that nanogenerators fabricated using two-dimensional MoS2 flakes may find potential applications in electromechanical sensing, wearable technology, pervasive computing, and implanted devices. In the present study, we theoretically examined the effect of the number of atomic layers in MoS2 flakes on the nanogenerator output. Under a square-wave applied strain, MoS2 flakes with an even number of atomic layers did not exhibit a piezoelectric output, owing to the presence of a projected inversion symmetry. On the other hand, for MoS2 flakes with an odd number of layers, owing to the lack of inversion symmetry, piezoelectric output voltage and current were generated, and decreased with the increase of the number of layers. Furthermore, as MoS2 flakes were only a few atoms thick, the capacitance of the MoS2 nanogenerators was at least an order of magnitude smaller than that of the nanowire- and nanofilm-based nanogenerators, enabling the use of MoS2 nanogenerators in high-frequency applications. Our results explain the experimental observations and provide guidance on optimizing and designing two-dimensional nanogenerators.

Keywords

piezoelectric nanogenerator MoS2 two-dimensional mechanical-electrical energy conversion high-frequency application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_959_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1061 KB.

References

  1. [1]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  2. [2]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRefGoogle Scholar
  3. [3]
    Kim, D. Y.; Lee, S.; Lin, Z.-H.; Choi, K. H.; Doo, S. G.; Chang, H.; Leem, J.-Y.; Wang, Z. L.; Kim, S.-O. High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators. Nano Energy 2014, 9, 101–111.CrossRefGoogle Scholar
  4. [4]
    Lin, L.; Lai, C.-H.; Hu, Y. F.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R. L.; Chen, L.-J.; Wang, Z. L. High output nanogenerator based on assembly of GaN nanowires. Nanotechnology 2011, 22, 475401.CrossRefGoogle Scholar
  5. [5]
    Huang, C.-T.; Song, J. H.; Lee, W.-F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L.-J.; Wang, Z. L. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766–4771.CrossRefGoogle Scholar
  6. [6]
    Wang, C.-H.; Liao, W.-S.; Lin, Z.-H.; Ku, N.-J.; Li, Y.-C.; Chen, Y.-C.; Wang, Z.-L.; Liu, C.-P. Optimization of the output efficiency of GaN nanowire piezoelectric nanogenerators by tuning the free carrier concentration. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201400392.Google Scholar
  7. [7]
    Wang, X. B.; Song, J. H.; Zhang, F.; He, C. Y.; Hu, Z.; Wang, Z. L. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv. Mater. 2010, 22, 2155–2158.CrossRefGoogle Scholar
  8. [8]
    Huang, C.-T.; Song, J. H.; Tsai, C.-M.; Lee, W.-F.; Lien, D.-H.; Gao, Z. Y.; Hao, Y.; Chen, L.-J.; Wang, Z. L. Single-InN-nanowire nanogenerator with upto 1 V output voltage. Adv. Mater. 2010, 22, 4008–4013.CrossRefGoogle Scholar
  9. [9]
    Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.CrossRefGoogle Scholar
  10. [10]
    Lee, K. Y.; Kumar, B.; Seo, J.-S.; Kim, K.-H.; Sohn, J. I.; Cha, S. N.; Choi, D.; Wang, Z. L.; Kim, S.-W. P-type polymerhybridized high-performance piezoelectric nanogenerators. Nano Lett. 2012, 12, 1959–1964.CrossRefGoogle Scholar
  11. [11]
    Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.CrossRefGoogle Scholar
  12. [12]
    Bai, S.; Zhang, L.; Xu, Q.; Zheng, Y. B.; Qin, Y.; Wang, Z. L. Two dimensional woven nanogenerator. Nano Energy 2013, 2, 749–753.CrossRefGoogle Scholar
  13. [13]
    Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.CrossRefGoogle Scholar
  14. [14]
    Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.CrossRefGoogle Scholar
  15. [15]
    Duerloo, K.-A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.CrossRefGoogle Scholar
  16. [16]
    Huang, X.; Li, L. J.; Zhang, Y. Modeling the open circuit output voltage of piezoelectric nanogenerator. Sci. China Tech. Sci. 2013, 56, 2622–2629.CrossRefGoogle Scholar
  17. [17]
    Bollinger, M. V.; Lauritsen, J. V.; Jacobsen, K. W.; Nørskov, J. K.; Helveg, S.; Besenbacher, F. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.CrossRefGoogle Scholar
  18. [18]
    Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.CrossRefGoogle Scholar
  19. [19]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  20. [20]
    Liu, W.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Density functional studies on edge-contacted single-layer MoS2 piezotronic transistors. Appl. Phys. Lett. 2015, 107, 083105.CrossRefGoogle Scholar
  21. [21]
    Hu, Y. F.; Zhang, Y.; Xu, C.; Zhu, G.; Wang, Z. L. Highoutput nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010, 10, 5025–5031.CrossRefGoogle Scholar
  22. [22]
    Lu, C.-P.; Li, G. H.; Mao, J. H.; Wang, L.-M.; Andrei, E. Y. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 2014, 14, 4628–4633.CrossRefGoogle Scholar
  23. [23]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  24. [24]
    Sun, C. L.; Shi, J.; Wang, X. D. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 2010, 108, 034309.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Theoretical Physics, and Key Laboratory for Magnetism and Magnetic Materials of MOELanzhou UniversityLanzhouChina
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations