Nano Research

, Volume 9, Issue 2, pp 549–559 | Cite as

Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction

  • Bo Peng
  • Xin Lu
  • Shi Chen
  • Cheng Hon Alfred Huan
  • Qihua Xiong
  • Evren Mutlugun
  • Hilmi Volkan Demir
  • Siu Fung Yu
Research Article

Abstract

The electron–hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study, we have developed a simple and efficient one-step strategy to synthesize luminescent Cdots using the pyrolysis of oleylamine. The sp2 clusters of a few aromatic rings are responsible for the observed blue photoluminescence. The size of these clusters can be tuned by controlling the reaction time, and the energy gap between the π–π* states of the sp2 domains decreases as the sp2 cluster size increases. More importantly, the strong electron–hole exchange interaction results in the splitting of the exciton states of the sp2 clusters into the singlet-bright and triplet-dark states with an energy difference ΔE, which decreases with increasing sp2 cluster size owing to the reduction of the confinement energy and the suppression of the electron–hole exchange interaction.

Keywords

carbon dots photoluminescence pyrolysis electron–hole exchange interaction energy splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.CrossRefGoogle Scholar
  2. [2]
    Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.CrossRefGoogle Scholar
  3. [3]
    Pan, J.; Utama, M. I. B.; Zhang, Q.; Liu, X. F.; Peng, B.; Wong, L. M.; Sum, T. C.; Wang, S. J.; Xiong, Q. H. Composition-tunable vertically aligned CdSxSe1-x nanowire arrays via van der waals epitaxy: Investigation of optical properties and photocatalytic behavior. Adv. Mater. 2012, 24, 4151–4156.CrossRefGoogle Scholar
  4. [4]
    Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.CrossRefGoogle Scholar
  5. [5]
    Wang, J.; Wang, C. F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem., Int. Ed. 2012, 51, 9297–9301.CrossRefGoogle Scholar
  6. [6]
    Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.CrossRefGoogle Scholar
  7. [7]
    Zhang, W. F.; Zhu, H.; Yu, S. F.; Yang, H. Y. Observation of lasing emission from carbon nanodots in organic solvents. Adv. Mater. 2012, 24, 2263–2267.CrossRefGoogle Scholar
  8. [8]
    Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S.-T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.CrossRefGoogle Scholar
  9. [9]
    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738.CrossRefGoogle Scholar
  10. [10]
    Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.CrossRefGoogle Scholar
  11. [11]
    Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803–2809.CrossRefGoogle Scholar
  12. [12]
    Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 2011, 21, 2445–2450.CrossRefGoogle Scholar
  13. [13]
    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Observation of pH-, solvent-, spin-, and excitationdependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681–3683.CrossRefGoogle Scholar
  14. [14]
    Xie, Z.; Wang, F.; Liu, C. Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721.CrossRefGoogle Scholar
  15. [15]
    Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528–4530.CrossRefGoogle Scholar
  16. [16]
    Ju, S.-Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygenexcluding surfactant organization. Science 2009, 323, 1319–1323.CrossRefGoogle Scholar
  17. [17]
    Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455–458.CrossRefGoogle Scholar
  18. [18]
    Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T.-K.; Sun, X. L.; Ding, Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745.CrossRefGoogle Scholar
  19. [19]
    Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.CrossRefGoogle Scholar
  20. [20]
    Luo, Z. T.; Lu, Y.; Somers, L. A.; Johnson, A. T. C. High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 2009, 131, 898–899.CrossRefGoogle Scholar
  21. [21]
    Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.CrossRefGoogle Scholar
  22. [22]
    Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.CrossRefGoogle Scholar
  23. [23]
    Wu, H. B.; Chen, W. Synthesis and reaction temperaturetailored self-assembly of copper sulfide nanoplates. Nanoscale 2011, 3, 5096–5102.CrossRefGoogle Scholar
  24. [24]
    Cattley, C. A.; Stavrinadis, A.; Beal, R.; Moghal, J.; Cook, A. G.; Grant, P. S.; Smith, J. M.; Assender, H.; Watt, A. A. R. Colloidal synthesis of lead oxide nanocrystals for photovoltaics. Chem. Commun. 2010, 46, 2802–2804.CrossRefGoogle Scholar
  25. [25]
    Hou, X. M.; Zhang, X. L.; Yang, W.; Liu, Y.; Zhai, X. M. Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer. Mater. Res. Bull. 2012, 47, 2579–2583.CrossRefGoogle Scholar
  26. [26]
    Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488.CrossRefGoogle Scholar
  27. [27]
    Kisner, A. Ultrathin Gold Nanowires: Chemistry, Electrical Characterization and Application to Sense Cellular Biology; Forschungszentrum Jülich, Zentralbibliothek: Jülich, 2012.Google Scholar
  28. [28]
    Gericke, A.; Huhnerfuss, H. Infrared spectroscopic comparison of enantiomeric and racemic N-octadecanoylserine methyl ester monolayers at the air/water interface. Langmuir 1994, 10, 3782–3786.CrossRefGoogle Scholar
  29. [29]
    Wang, Y.; Alsmeyer, D. C.; Mccreery, R. L. Ramanspectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563.CrossRefGoogle Scholar
  30. [30]
    Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A. L.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.CrossRefGoogle Scholar
  31. [31]
    Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C. 2009, 113, 18546–18551.CrossRefGoogle Scholar
  32. [32]
    Tommasini, M.; Castiglioni, C.; Zerbi, G. Raman scattering of molecular graphenes. Phys Chem. Chem. Phys. 2009, 11, 10185–10194.CrossRefGoogle Scholar
  33. [33]
    Haerle, R.; Riedo, E.; Pasquarello, A.; Baldereschi, A. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and firstprinciples calculation. Phys. Rev. B 2001, 65, 045101.CrossRefGoogle Scholar
  34. [34]
    Yumitori, S. Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 2000, 35, 139–146.CrossRefGoogle Scholar
  35. [35]
    Yu, X. L.; Tong, S. R.; Ge, M. F.; Wu, L. Y.; Zuo, J. C.; Cao, C. Y.; Song, W. G. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci. 2013, 25, 933–943.CrossRefGoogle Scholar
  36. [36]
    Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  37. [37]
    Chen, J. P.; Yang, L. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir 2006, 22, 8906–8914.CrossRefGoogle Scholar
  38. [38]
    Sk, M. P.; Jaiswal, A.; Paul, A.; Ghosh, S. S.; Chattopadhyay, A. Presence of amorphous carbon nanoparticles in food caramels. Sci. Rep. 2012, 2, 383.CrossRefGoogle Scholar
  39. [39]
    Taylor, P. R. On the origins of the blue shift of the carbonyl π–π* transition in hydrogen-bonding solvents. J. Am. Chem. Soc. 1982, 104, 5248–5249.CrossRefGoogle Scholar
  40. [40]
    Nizamoglu, S.; Demir, H. V. Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes. J. Appl. Phys. 2009, 105, 083112.CrossRefGoogle Scholar
  41. [41]
    Peng, B.; Li, Z. P.; Mutlugun, E.; Hernández Martínez, P. L.; Li, D. H.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. H. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592–5598.CrossRefGoogle Scholar
  42. [42]
    Peng, B.; Li, G. Y.; Li, D. H.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. H. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993–6000.CrossRefGoogle Scholar
  43. [43]
    Peng, B.; Zhang, Q.; Liu, X. F.; Ji, Y.; Demir, H. V.; Huan, C. H. A.; Sum, T. C.; Xiong, Q. H. Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation. ACS Nano 2012, 6, 6250–6259.CrossRefGoogle Scholar
  44. [44]
    Zhang, Q.; Liu, X. F.; Utama, M. I. B.; Zhang, J.; de la Mata, M.; Arbiol, J.; Lu, Y. H.; Sum, T. C.; Xiong, Q. H. Highly enhanced exciton recombination rate by strong electron–phonon coupling in single ZnTe nanobelt. Nano Lett. 2012, 12, 6420–6427.CrossRefGoogle Scholar
  45. [45]
    Labeau, O.; Tamarat, P.; Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 2003, 90, 257404.Google Scholar
  46. [46]
    Brovelli, S.; Schaller, R. D.; Crooker, S. A.; García-Santamaría, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Klimov, V. I. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2011, 2, 280.CrossRefGoogle Scholar
  47. [47]
    Matsuda, K. Novel excitonic properties of carbon nanotube studied by advanced optical spectroscopy. In Progress in Nanophotonics 2; Ohtsu, M., Ed.; Springer: Berlin Heidelberg, 2013; pp 33–70.CrossRefGoogle Scholar
  48. [48]
    de Mello Donegá, C.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.CrossRefGoogle Scholar
  49. [49]
    Brongersma, M. L.; Kik, P. G.; Polman, A.; Min, K. S.; Atwater, H. A. Size-dependent electron–hole exchange interaction in Si nanocrystals. Appl. Phys. Lett. 2000, 76, 351–353.CrossRefGoogle Scholar
  50. [50]
    Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the darkexciton lifetime. Appl. Phys. Lett. 2003, 82, 2793–2795.CrossRefGoogle Scholar
  51. [51]
    Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bo Peng
    • 1
  • Xin Lu
    • 1
  • Shi Chen
    • 1
  • Cheng Hon Alfred Huan
    • 1
  • Qihua Xiong
    • 1
    • 2
  • Evren Mutlugun
    • 3
  • Hilmi Volkan Demir
    • 3
  • Siu Fung Yu
    • 4
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.LUMINOUS, Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  4. 4.Department of Applied Physicsthe Hong Kong Polytechnic UniversityHong Hum, Hong Kong SARChina
  5. 5.National Engineering Research Center of Electromagnetic Radiation Control MaterialsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations