Advertisement

Nano Research

, Volume 9, Issue 2, pp 490–498 | Cite as

Two-dimensional quantum transport of multivalley (111) surface state in topological crystalline insulator SnTe thin films

  • Ryota AkiyamaEmail author
  • Kazuki Fujisawa
  • Tomonari Yamaguchi
  • Ryo Ishikawa
  • Shinji KurodaEmail author
Research Article

Abstract

The magneto-transport properties of (111)-oriented single-crystal thin films of SnTe were investigated. SnTe (111) thin films were epitaxially grown on a BaF2 substrate by molecular beam epitaxy. By optimizing the growth conditions and the thickness of the films, the bulk carrier density could be reduced, making it possible to detect the surface transport. Magneto-conductance (MC) measurements show a cusp-like feature around zero magnetic field, which is attributed to the weak-antilocalization effect of the transport in the topological surface state. Detailed analysis of this negative MC reveals a reduced number of transport channels contributing to the surface transport, suggesting strong coupling between Dirac valleys on the SnTe (111) surface, as a characteristic feature of the transport in the multivalley structure of topological crystalline insulators.

Keywords

SnTe (111) films topological crystalline insulators weak antilocalization phase coherence length Dirac valleys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_930_MOESM1_ESM.pdf (783 kb)
Supplementary material, approximately 802 KB.

References

  1. [1]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.CrossRefGoogle Scholar
  2. [2]
    Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.CrossRefGoogle Scholar
  3. [3]
    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 2013, 82, 102001.CrossRefGoogle Scholar
  4. [4]
    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.CrossRefGoogle Scholar
  5. [5]
    Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.CrossRefGoogle Scholar
  6. [6]
    Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takabayashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.CrossRefGoogle Scholar
  7. [7]
    Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Lusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012, 11, 1023–1027.Google Scholar
  8. [8]
    Zeljkovic, I.; Okada, Y.; Huang, C.-Y.; Sankar, R.; Walkup, D.; Zhou, W. W.; Serbyn, M.; Chou, F. C.; Tsai, W.-F.; Lin, H. et al. Mapping the unconventional orbital texture in topological crystalline insulators. Nat. Phys. 2014, 10, 572–577.CrossRefGoogle Scholar
  9. [9]
    Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of singlecrystalline SnTe nanowire. Nano Lett. 2013, 13, 5344–5349.CrossRefGoogle Scholar
  10. [10]
    Taskin, A. A.; Yang, F.; Sasaki, S.; Segawa, K.; Ando, Y. Topological surface transport in epitaxial SnTe thin films grown on Bi2Te3. Phys. Rev. B 2014, 89, 121302.CrossRefGoogle Scholar
  11. [11]
    Assaf, B. A.; Katmis, F.; Wei, P.; Satpati, B.; Zhang, Z.; Bennett, S. P.; Harris, V. G.; Moodera, J. S.; Heiman, D. Quantum coherent transport in SnTe topological crystalline insulator thin films. Appl. Phys. Lett. 2014, 105, 102108.CrossRefGoogle Scholar
  12. [12]
    Akiyama, R.; Fujisawa, K.; Sakurai, R.; Kuroda, S. Weak antilocalization in (111) thin films of a topological crystalline insulator SnTe. J. Phys.: Conf. Ser. 2014, 568, 052001.Google Scholar
  13. [13]
    He, L.; Xiu, F. X.; Yu, X. X.; Teague, M.; Jiang, W. J.; Fan, Y. B.; Kou, X. F.; Lang, M. R.; Wang, Y.; Huang, G. et al. Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett. 2012, 12, 1486–1490.CrossRefGoogle Scholar
  14. [14]
    Tanabe, Y.; Huynh, K. K.; Nouchi, R.; Heguri, S.; Mu, G.; Xu, J. T.; Shimotani H.; Tanigaki, K. Electron and hole injection via charge transfer at the topological insulator Bi2–xSbxTe3–ySey–organic molecule interface. J. Phys. Chem. C 2014, 118, 3533–3538.CrossRefGoogle Scholar
  15. [15]
    Wiedmann, S.; Jost, A.; Thienel, C.; Brü ne, C.; Leubner, P.; Buhmann, H.; Molenkamp, L. W.; Maan, J. C.; Zeitler, U. Temperature-driven transition from a semiconductor to a topological insulator. Phys. Rev. B 2015, 91, 205311.CrossRefGoogle Scholar
  16. [16]
    Tsu, R.; Howard, W. E.; Esaki, L. Optical and electrical properties and band structure of GeTe and SnTe. Phys. Rev. 1968, 172, 779–788.CrossRefGoogle Scholar
  17. [17]
    Steinberg, H.; Laloë, J.-B.; Fatemi, V.; Moodera, J. S.; Jarillo-Herrero, P. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B 2011, 84, 233101.CrossRefGoogle Scholar
  18. [18]
    Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 1980, 63, 707–710.CrossRefGoogle Scholar
  19. [19]
    McCann, E.; Kechedzhi, K.; Fal’ ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.CrossRefGoogle Scholar
  20. [20]
    Cha, J. J.; Kong, D. S.; Hong, S.-S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates. Nano Lett. 2012, 12, 1107–1111.CrossRefGoogle Scholar
  21. [21]
    Bao, L.; He, L.; Meyer, N.; Kou, X.; Zhang, P.; Chen, Z.-G.; Fedorov, A. V.; Zou, J.; Riedemann, T. M.; Lograsso, T. A. et al. Weak anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep. 2012, 2, 726.CrossRefGoogle Scholar
  22. [22]
    He, H.-T.; Wang, G.; Zhang, T.; Sou, I.-K.; Wong, G. K. L.; Wang, J.-N.; Lu, H.-Z.; Shen, S.-Q.; Zhang, F.-C. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 2011, 106, 166805.CrossRefGoogle Scholar
  23. [23]
    Tanaka, Y.; Shoman, T.; Nakayama, K.; Souma, S.; Sato, T.; Takahashi, T.; Novak, M.; Segawa, K.; Ando, Y. Two types of Dirac-cone surface states on the (111) surface of the topological crystalline insulator SnTe. Phys. Rev. B 2013, 88, 235126.CrossRefGoogle Scholar
  24. [24]
    Polley, C. M.; Dziawa, P.; Reszka, A.; Szczerbakow, A.; Minikayev, R.; Domagala, J. Z.; Safaei, S.; Kacman, P.; Buczko, R.; Adell, J. et al. Observation of topological crystalline insulator surface states on (111)-oriented Pb1-xSnxSe films. Phys. Rev. B 2014, 89, 075317.CrossRefGoogle Scholar
  25. [25]
    Li, Z. G.; Garate, I.; Pan, J.; Wan, X. G.; Chen, T. S.; Ning, W.; Zhang, X. O.; Song, F. Q.; Meng, Y. Z.; Hong, X. C. et al. Experimental evidence and control of the bulk-mediated intersurface coupling in topological insulator Bi2Te2Se nanoribbons. Phys. Rev. B 2015, 91, 041401.CrossRefGoogle Scholar
  26. [26]
    Lu, H.-Z.; Shen, S.-Q. Weak localization of bulk channels in topological insulator thin films. Phys. Rev. B 2011, 84, 125138.CrossRefGoogle Scholar
  27. [27]
    Anderson, P. W.; Abrahams, E.; Ramakrishnan, T. V. Possible explanation of nonlinear conductivity in thin-film metal wires. Phys. Rev. Lett. 1979, 43, 718–720.CrossRefGoogle Scholar
  28. [28]
    Abrahams, E.; Anderson, P. W.; Lee, P. A.; Ramakrishnan, T. V. Quasiparticle lifetime in disordered two-dimensional metals. Phys. Rev. B 1981, 24, 6783–6789.CrossRefGoogle Scholar
  29. [29]
    Aitani, M.; Hirahara, T.; Ichinokura, S.; Hanaduka, M.; Shin, D.; Hasegawa, S. In situ magnetotransport measurements in ultrathin Bi films: Evidence for surface-bulk coherent transport. Phys. Rev. Lett. 2014, 113, 206802.CrossRefGoogle Scholar
  30. [30]
    Chiu, S.-P.; Lin, J.-J. Weak antilocalization in topological insulator Bi2Te3 microflakes. Phys. Rev. B 2013, 87, 035122.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Materials ScienceUniversity of TsukubaTsukubaJapan

Personalised recommendations