Advertisement

Nano Research

, Volume 9, Issue 1, pp 149–157 | Cite as

In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability

  • Enbo Zhu
  • Yongjia Li
  • Chin-Yi Chiu
  • Xiaoqing Huang
  • Mufan Li
  • Zipeng Zhao
  • Yuan Liu
  • Xiangfeng Duan
  • Yu Huang
Research Article

Abstract

Controlled syntheses of PtNi metal nanocrystals with unique structures for catalyzing oxygen reduction reactions (ORRs) have attracted great interest. Here, we report the one-step synthesis of single-crystal PtNi octahedra with in situ-developed highly concave features and self-confined composition that are optimal for ORR. Detailed studies revealed that the Pt-rich seeding, subsequent Pt/Ni co-reduction, and Pt–Ni interfusion resulted in uniform single-crystal PtNi octahedra, and that the combination of Ni facet segregation and oxygen etching of a Ni-rich surface led to the concavity and confined Ni content. The concave PtNi nanocrystals exhibited much higher ORR performance than the commercially available Pt/C catalyst in terms of both specific activity (29.1 times higher) and mass activity (12.9 times higher) at 0.9 V (vs. reversible hydrogen electrode (RHE)). The performance was also higher than that of PtNi octahedra without concavity, confirming that the higher activity was closely related to its morphology. Moreover, the concave octahedra also exhibited remarkable stability in ORR (93% mass activity remained after 10,000 cycles between 0.6 and 1.1 V vs. RHE) owing to the passivation of the unstable sites.

Keywords

PtNi alloy concave oxygen reduction reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_927_MOESM1_ESM.pdf (6.9 mb)
Supplementary material, approximately 7026 KB.

References

  1. [1]
    Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.CrossRefGoogle Scholar
  2. [2]
    Su, D. S.; Sun, G. Q. Nonprecious-metal catalysts for low-cost fuel cells. Angew. Chem., Int. Ed. 2011, 50, 11570–11572.CrossRefGoogle Scholar
  3. [3]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.Google Scholar
  4. [4]
    Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.CrossRefGoogle Scholar
  5. [5]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  6. [6]
    Porter, N. S.; Wu, H., Quan, Z. W.; Fang, J. Y. Shapecontrol and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.CrossRefGoogle Scholar
  7. [7]
    Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238–1254.CrossRefGoogle Scholar
  8. [8]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 2005, 56, 9–35.CrossRefGoogle Scholar
  9. [9]
    De Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.CrossRefGoogle Scholar
  10. [10]
    Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar
  11. [11]
    Gasteiger, H. A.; Markovic, N. M. Just a dream-or future reality? Science 2009, 324, 48–49.CrossRefGoogle Scholar
  12. [12]
    Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.CrossRefGoogle Scholar
  13. [13]
    Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.CrossRefGoogle Scholar
  14. [14]
    Li, Y. J.; Li, Y. J.; Zhu, E. B.; McLouth, T.; Chiu, C. Y.; Huang, X. Q.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 2012, 134, 12326–12329.CrossRefGoogle Scholar
  15. [15]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  16. [16]
    Wu, J. B.; Gross, A.; Yang, H. Shape and compositioncontrolled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011, 11, 798–802.CrossRefGoogle Scholar
  17. [17]
    Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.CrossRefGoogle Scholar
  18. [18]
    Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C.-W. et al. Interfacial effects in iron–nickel hydroxide- platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.Google Scholar
  19. [19]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  20. [20]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  21. [21]
    Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.CrossRefGoogle Scholar
  22. [22]
    Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.Google Scholar
  23. [23]
    Choi, S. I.; Xie, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X. H. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420–3425.Google Scholar
  24. [24]
    Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.CrossRefGoogle Scholar
  25. [25]
    Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.Google Scholar
  26. [26]
    Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.CrossRefGoogle Scholar
  27. [27]
    Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 8535–8542.CrossRefGoogle Scholar
  28. [28]
    Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.Google Scholar
  29. [29]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.Google Scholar
  30. [30]
    Li, Y. J.; Quan, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.CrossRefGoogle Scholar
  31. [31]
    Liu, X.; Wang, W.; Li, H.; Li, L.; Zhou, G.; Yu, R.; Wang, D.; Li, Y. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.Google Scholar
  32. [32]
    Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Synder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with threedimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.Google Scholar
  33. [33]
    Li, Y. J.; Quan, F. X.; Chen, L.; Zhang, W. J.; Yu, H. B.; Chen, C. F. Synthesis of Fe-doped octahedral Pt3Ni nanocrystals with high electro-catalytic activity and stability towards oxygen reduction reaction. RSC Adv. 2014, 4, 1895–1899.CrossRefGoogle Scholar
  34. [34]
    Colón-Mercado, H. R.; Popov, B. N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. J. Power Sources 2006, 155, 253–263.CrossRefGoogle Scholar
  35. [35]
    Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.CrossRefGoogle Scholar
  36. [36]
    Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt–Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.CrossRefGoogle Scholar
  37. [37]
    Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; Di Salvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  38. [38]
    Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.CrossRefGoogle Scholar
  39. [39]
    Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt–Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.Google Scholar
  40. [40]
    Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.CrossRefGoogle Scholar
  41. [41]
    Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. Structure and electrocatalytic activity of carbon-supported Pt–Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 2004, 108, 11024–11034.CrossRefGoogle Scholar
  42. [42]
    Fortunelli, A.; Goddard III, W. A.; Sementa, L.; Barcaro, G.; Negreiros, F. R.; Jaramillo-Botero, A. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts. Chem. Sci. 2015, 6, 3915–3925.CrossRefGoogle Scholar
  43. [43]
    Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.CrossRefGoogle Scholar
  44. [44]
    Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.CrossRefGoogle Scholar
  45. [45]
    Speight, J. G. Lange's Handbook of Chemistry; McGraw-Hill: New York, 2005.Google Scholar
  46. [46]
    Walker, R. A.; Darby, J. B. Jr. Thermodynamic properties of solid nickel–platinum alloys. Acta Metall. 1970, 18, 1261–1266.CrossRefGoogle Scholar
  47. [47]
    Wiley, B.; Sun, Y. G.; Xia, Y. N. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 2007, 40, 1067–1076.CrossRefGoogle Scholar
  48. [48]
    Lu, Z. W.; Wei, S. H.; Zunger, A. Long-range order in binary late-transition-metal alloys. Phys. Rev. Lett. 1991, 66, 1753–1756.CrossRefGoogle Scholar
  49. [49]
    Shang, S. L.; Wang, Y.; Kim, D. E.; Zacherl, C. L.; Du, Y.; Liu, Z. K. Structural, vibrational, and thermodynamic properties of ordered and disordered Ni1-xPtx alloys from first-principles calculations. Phys. Rev. B 2011, 83, 144204.CrossRefGoogle Scholar
  50. [50]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with highindex facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  51. [51]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.CrossRefGoogle Scholar
  52. [52]
    Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.CrossRefGoogle Scholar
  53. [53]
    Zhang, H.; Jin, M. S.; Xia, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.CrossRefGoogle Scholar
  54. [54]
    Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2012, 132, 14012–14014.CrossRefGoogle Scholar
  55. [55]
    Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.CrossRefGoogle Scholar
  56. [56]
    Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 2773–2777.CrossRefGoogle Scholar
  57. [57]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. 2014, 126, 12730–12735.Google Scholar
  58. [58]
    Snyder, J.; Erlebacher, J. Kinetics of crystal etching limited by terrace dissolution. J. Electrochem. Soc. 2010, 157, C125–C130.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Enbo Zhu
    • 1
  • Yongjia Li
    • 1
  • Chin-Yi Chiu
    • 1
  • Xiaoqing Huang
    • 1
  • Mufan Li
    • 2
  • Zipeng Zhao
    • 1
  • Yuan Liu
    • 1
  • Xiangfeng Duan
    • 2
    • 3
  • Yu Huang
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  3. 3.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations