Nano Research

, Volume 9, Issue 2, pp 306–316 | Cite as

Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects

  • Shuo Cao
  • Jing Tang
  • Yue Sun
  • Kai Peng
  • Yunan Gao
  • Yanhui Zhao
  • Chenjiang Qian
  • Sibai Sun
  • Hassan Ali
  • Yuting Shao
  • Shiyao Wu
  • Feilong Song
  • David A. Williams
  • Weidong Sheng
  • Kuijuan Jin
  • Xiulai Xu
Research Article

Abstract

We report the direct observation of coupling between a single self-assembled InAs quantum dot and a wetting layer, based on strong diamagnetic shifts of many-body exciton states using magneto-photoluminescence spectroscopy. An extremely large positive diamagnetic coefficient is observed when an electron in the wetting layer combines with a hole in the quantum dot; the coefficient is nearly one order of magnitude larger than that of the exciton states confined in the quantum dots. Recombination of electrons with holes in a quantum dot of the coupled system leads to an unusual negative diamagnetic effect, which is five times stronger than that in a pure quantum dot system. This effect can be attributed to the expansion of the wavefunction of remaining electrons in the wetting layer or the spread of electrons in the excited states of the quantum dot to the wetting layer after recombination. In this case, the wavefunction extent of the final states in the quantum dot plane is much larger than that of the initial states because of the absence of holes in the quantum dot to attract electrons. The properties of emitted photons that depend on the large electron wavefunction extents in the wetting layer indicate that the coupling occurs between systems of different dimensionality, which is also verified from the results obtained by applying a magnetic field in different configurations. This study paves a new way to observe hybrid states with zero- and two-dimensional structures, which could be useful for investigating the Kondo physics and implementing spin-based solid-state quantum information processing.

Keywords

magnetophotoluminescence InAs quantum dots wetting layer strong diamagnetic effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_910_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1175 KB.

References

  1. [1]
    Kim, J.; Benson, O.; Kan, H.; Yamamoto, Y. A singlephoton turnstile device. Nature 1999, 397, 500–503.CrossRefGoogle Scholar
  2. [2]
    Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L. D.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285.CrossRefGoogle Scholar
  3. [3]
    Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Electrically pumped single-photon sources in lateral p–i–n junctions. Appl. Phys. Lett. 2004, 85, 3238–3240.CrossRefGoogle Scholar
  4. [4]
    Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102–105.CrossRefGoogle Scholar
  5. [5]
    Xu, X. L.; Toft, I.; Phillips, R. T.; Mar, J.; Hammura, K.; Williams, D. A. “Plug and play” single-photon sources. Appl. Phys. Lett. 2007, 90, 061103.CrossRefGoogle Scholar
  6. [6]
    Xu, X. L.; Brossard, F.; Hammura, K.; Williams, D. A.; Alloing, B.; Li, L. H.; Fiore, A. “Plug and play” single photons at 1.3 µm approaching gigahertz operation. Appl. Phys. Lett. 2008, 93, 021124.CrossRefGoogle Scholar
  7. [7]
    Zrenner, A.; Beham, E.; Stufler, S.; Findeis, F.; Bichler, M.; Abstreiter, G. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 2002, 418, 612–614.CrossRefGoogle Scholar
  8. [8]
    Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Phys. Rev. B 2014, 90, 241303.CrossRefGoogle Scholar
  9. [9]
    Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809–811.CrossRefGoogle Scholar
  10. [10]
    De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 2012, 491, 421–425.CrossRefGoogle Scholar
  11. [11]
    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L. M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 2013, 110, 167401.CrossRefGoogle Scholar
  12. [12]
    Webster, L. A.; Truex, K.; Duan, L. M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Coherent control to prepare an InAs quantum dot for spin-photon entanglement. Phys. Rev. Lett. 2014, 112, 126801.CrossRefGoogle Scholar
  13. [13]
    Ediger, M.; Bester, G.; Badolato, A.; Petroff, P. M.; Karrai, K.; Zunger, A.; Warburton, R. J. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys. 2007, 3, 774–779.CrossRefGoogle Scholar
  14. [14]
    Tang, J.; Cao, S.; Gao, Y.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett. 2014, 105, 041109.CrossRefGoogle Scholar
  15. [15]
    Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P.; Graham, A. M.; Stanley, M. J.; Hugues, M.; Hopkinson, M.; Phillips, R. T. From the artificial atom to the Kondo–Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. Phys. Rev. B 2013, 87, 205308.CrossRefGoogle Scholar
  16. [16]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  17. [17]
    Fuhrer, M. S.; Hone, J. Measurement of mobility in dualgated MoS2 transistors. Nat. Nano 2013, 8, 146–147.CrossRefGoogle Scholar
  18. [18]
    Hong, X. P.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nano 2014, 9, 682–686.CrossRefGoogle Scholar
  19. [19]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nano 2014, 9, 372–377.CrossRefGoogle Scholar
  20. [20]
    Latta, C.; Haupt, F.; Hanl, M.; Weichselbaum, A.; Claassen, M.; Wuester, W.; Fallahi, P.; Faelt, S.; Glazman, L.; von Delft, J. et al. Quantum quench of Kondo correlations in optical absorption. Nature 2011, 474, 627–630.Google Scholar
  21. [21]
    Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Y.; Koenraad, P. M. Many-body exciton states in self-assembled quantum dots coupled to a fermi sea. Nat. Phys. 2010, 6, 534–538.CrossRefGoogle Scholar
  22. [22]
    Türeci, H. E.; Hanl, M.; Claassen, M.; Weichselbaum, A.; Hecht, T.; Braunecker, B.; Govorov, A.; Glazman, L.; Imamoglu, A.; von Delft, J. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards kondo correlations. Phys. Rev. Lett. 2011, 106, 107402.CrossRefGoogle Scholar
  23. [23]
    Govorov, A. O.; Karrai, K.; Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 2003, 67, 241307.CrossRefGoogle Scholar
  24. [24]
    Zhang, W.; Govorov, A. O.; Bryant, G. W. Semiconductormetal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 2006, 97, 146804.CrossRefGoogle Scholar
  25. [25]
    Bar-Ad, S.; Kner, P.; Marquezini, M. V.; Mukamel, S.; Chemla, D. S. Quantum confined Fano interference. Phys. Rev. Lett. 1997, 78, 1363–1366.CrossRefGoogle Scholar
  26. [26]
    Kroner, M.; Govorov, A. O.; Remi, S.; Biedermann, B.; Seidl, S.; Badolato, A.; Petroff, P. M.; Zhang, W.; Barbour, R.; Gerardot, B. D. et al. The nonlinear Fano effect. Nature 2008, 451, 311–314.Google Scholar
  27. [27]
    Karrai, K.; Warburton, R. J.; Schulhauser, C.; Hö gele, A.; Urbaszek, B.; McGhee, E. J.; Govorov, A. O.; Garcia, J. M.; Gerardot, B. D.; Petroff, P. M. Hybridization of electronic states in quantum dots through photon emission. Nature 2004, 427, 135–138.CrossRefGoogle Scholar
  28. [28]
    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of anderson excitons. Phys. Rev. B 2005, 72, 125301.CrossRefGoogle Scholar
  29. [29]
    Dalgarno, P. A.; Ediger, M.; Gerardot, B. D.; Smith, J. M.; Seidl, S.; Kroner, M.; Karrai, K.; Petroff, P. M.; Govorov, A. O.; Warburton, R. J. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 2008, 100, 176801.CrossRefGoogle Scholar
  30. [30]
    Hilario, L. M. L.; Aligia, A. A. Photoluminescence of a quantum dot hybridized with a continuum of extended states. Phys. Rev. Lett. 2009, 103, 156802.CrossRefGoogle Scholar
  31. [31]
    Mazur, Y. I.; Dorogan, V. G.; Guzun, D.; Marega, E.; Salamo, G. J.; Tarasov, G. G.; Govorov, A. O.; Vasa, P.; Lienau, C. Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Phys. Rev. B 2010, 82, 155413.CrossRefGoogle Scholar
  32. [32]
    Syperek, M.; Andrzejewski, J.; Rudno-Rudzinski, W.; Sek, G.; Misiewicz, J.; Pavelescu, E. M.; Gilfert, C.; Reithmaier, J. P. Influence of electronic coupling on the radiative lifetime in the (In, Ga)As/GaAs quantum dot-quantum well system. Phys. Rev. B 2012, 85, 125311.CrossRefGoogle Scholar
  33. [33]
    Leonard, D.; Pond, K.; Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 1994, 50, 11687–11692.CrossRefGoogle Scholar
  34. [34]
    Eisenberg, H. R.; Kandel, D. Wetting layer thickness and early evolution of epitaxially strained thin films. Phys. Rev. Lett. 2000, 85, 1286–1289.CrossRefGoogle Scholar
  35. [35]
    Hugues, M.; Teisseire, M.; Chauveau, J. M.; Vinter, B.; Damilano, B.; Duboz, J. Y.; Massies, J. Optical determination of the effective wetting layer thickness and composition in InAs/Ga(In)As quantum dots. Phys. Rev. B 2007, 76, 075335.CrossRefGoogle Scholar
  36. [36]
    Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Splitting of excitons and biexcitons in coupled InAs quantum dot molecules. Appl. Phys. Lett. 2005, 86, 012103.CrossRefGoogle Scholar
  37. [37]
    Nash, K. J.; Skolnick, M. S.; Claxton, P. A.; Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 1989, 39, 10943–10954.CrossRefGoogle Scholar
  38. [38]
    Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B 1998, 57, 9088–9096.CrossRefGoogle Scholar
  39. [39]
    Tsai, M.-F.; Lin, H.; Lin, C.-H.; Lin, S.-D.; Wang, S.-Y.; Lo, M.-C.; Cheng, S.-J.; Lee, M.-C.; Chang, W.-H. Diamagnetic response of exciton complexes in semiconductor quantum dots. Phys. Rev. Lett. 2008, 101, 267402.CrossRefGoogle Scholar
  40. [40]
    Fu, Y. J.; Lin, S. D.; Tsai, M. F.; Lin, H.; Lin, C. H.; Chou, H. Y.; Cheng, S. J.; Chang, W. H. Anomalous diamagnetic shift for negative trions in single semiconductor quantum dots. Phys. Rev. B 2010, 81, 113307.CrossRefGoogle Scholar
  41. [41]
    Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B 2002, 66, 193303.CrossRefGoogle Scholar
  42. [42]
    Cao, S.; Tang, J.; Gao, Y.; Sun, Y.; Qiu, K. S.; Zhao, Y. H.; He, M.; Shi, J. A.; Gu, L.; Williams, D. A. et al. Longitudinal wave function control in single quantum dots with an applied magnetic field. Sci. Rep. 2015, 5, 8041.Google Scholar
  43. [43]
    Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Sheng, W.; Hawrylak, P.; Wasilewski, Z.; Fafard, S.; Forchel, A. Ground-state emission from a single InAs/GaAs self-assembled quantum dot structure in ultrahigh magnetic fields. Phys. Rev. B 2006, 74, 075310.CrossRefGoogle Scholar
  44. [44]
    Someya, T.; Akiyama, H.; Sakaki, H. Laterally squeezed excitonic wave function in quantum wires. Phys. Rev. Lett. 1995, 74, 3664–3667.CrossRefGoogle Scholar
  45. [45]
    Mensing, T.; Reitzenstein, S.; Lö ffler, A.; Reithmaier, J. P.; Forchel, A. Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Phys. E: Low-Dimens. Sys. Nanostruct. 2006, 32, 131–134.CrossRefGoogle Scholar
  46. [46]
    Mahan, G. D. Excitons in degenerate semiconductors. Phys. Rev. 1967, 153, 882–889.CrossRefGoogle Scholar
  47. [47]
    Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. Shakeup processes in the recombination spectra of negatively charged excitons. Phys. Rev. B 1996, 53, 12593–12596.CrossRefGoogle Scholar
  48. [48]
    Kheng, K.; Cox, R. T.; d’Aubigné, M. Y.; Bassani, F.; Saminadayar, K.; Tatarenko, S. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett. 1993, 71, 1752–1755.CrossRefGoogle Scholar
  49. [49]
    Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B 2007, 76, 033301.CrossRefGoogle Scholar
  50. [50]
    Brunner, D.; Gerardot, B. D.; Dalgarno, P. A.; Wüst, G.; Karrai, K.; Stoltz, N. G.; Petroff, P. M.; Warburton, R. J. A coherent single-hole spin in a semiconductor. Science 2009, 325, 70–72.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shuo Cao
    • 1
  • Jing Tang
    • 1
  • Yue Sun
    • 1
  • Kai Peng
    • 1
  • Yunan Gao
    • 1
  • Yanhui Zhao
    • 1
  • Chenjiang Qian
    • 1
  • Sibai Sun
    • 1
  • Hassan Ali
    • 1
  • Yuting Shao
    • 1
  • Shiyao Wu
    • 1
  • Feilong Song
    • 1
  • David A. Williams
    • 2
  • Weidong Sheng
    • 3
  • Kuijuan Jin
    • 1
    • 4
  • Xiulai Xu
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Hitachi Cambridge LaboratoryCavendish LaboratoryCambridgeUK
  3. 3.Department of PhysicsFudan UniversityShanghaiChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations