Advertisement

Nano Research

, Volume 8, Issue 12, pp 4048–4060 | Cite as

Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis

  • Sara Yazji
  • Eric A. Hoffman
  • Daniele Ercolani
  • Francesco Rossella
  • Alessandro Pitanti
  • Alessandro Cavalli
  • Stefano Roddaro
  • Gerhard Abstreiter
  • Lucia Sorba
  • Ilaria Zardo
Research Article

Abstract

Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.

Keywords

thermoelectric thermoelectric figure of merit Raman spectroscopy field-effect transistor measurements nanowire InSb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_906_MOESM1_ESM.pdf (3.1 mb)
Supplementary material, approximately 3123 KB.

References

  1. [1]
    Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.CrossRefGoogle Scholar
  2. [2]
    Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.CrossRefGoogle Scholar
  3. [3]
    Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.CrossRefGoogle Scholar
  4. [4]
    Heremans, J. P.; Dresselhaus, M. S.; Bell, L. E.; Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471–473.CrossRefGoogle Scholar
  5. [5]
    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.CrossRefGoogle Scholar
  6. [6]
    DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706.CrossRefGoogle Scholar
  7. [7]
    Zhao, L.-D.; Lo, S.-H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid V. P.; Kanatzidis M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.CrossRefGoogle Scholar
  8. [8]
    Roh, J. W.; Jang S. Y.; Kang, J.; Lee, S.; Noh, J.-S.; Kim, W.; Park, J.; Lee, W. Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires. Appl. Phys. Lett. 2010, 96, 103101.CrossRefGoogle Scholar
  9. [9]
    Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.CrossRefGoogle Scholar
  10. [10]
    Zhou, F.; Moore, A. L.; Bolinsson, J.; Persson, A.; Fröberg, L.; Pettes, M. T.; Kong, H. J.; Rabenberg, L.; Caroff, P.; Stewart, D. A. et al. Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 2011, 83, 205416.CrossRefGoogle Scholar
  11. [11]
    Doerk, G. S.; Carraro, C.; Maboudian, R. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 2010, 4, 4908–4914.CrossRefGoogle Scholar
  12. [12]
    Soini, M.; Zardo, I.; Uccelli, E.; Funk, S.; Koblmüller, G.; Fontcuberta i Morral, A.; Abstreiter, G. Thermal conductivity of GaAs nanowires studied by micro-raman spectroscopy combined with laser heating. Appl. Phys. Lett. 2010, 97, 263107.CrossRefGoogle Scholar
  13. [13]
    Zhou, F.; Seol, J. H.; Shi, L.; Ye, Q. L.; Scheffler, R. One-dimensional electron transport and thermopower in an individual InSb nanowire. J. Phys.: Condens. Matter 2006, 18, 9651–9657.Google Scholar
  14. [14]
    Shapira, E.; Tsukernik, A.; Selzer, Y. Thermopower measurements on individual 30 nm nickel nanowires. Nanotechnology 2007, 18, 485703.CrossRefGoogle Scholar
  15. [15]
    Roddaro, S.; Ercolani, D.; Safeen, M. A.; Suomalainen, S.; Rossella, F.; Giazotto, F.; Sorba, L.; Beltram, F. Giant thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 2013, 13, 3638-3642.CrossRefGoogle Scholar
  16. [16]
    Roddaro, S.; Ercolani, D.; Safeen, M. A.; Rossella, F.; Piazza, V.; Giazotto, F.; Sorba, L.; Beltram, F. Large thermal biasing of individual gated nanostructures. Nano Res. 2014, 7, 579–587.CrossRefGoogle Scholar
  17. [17]
    Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881–888.CrossRefGoogle Scholar
  18. [18]
    Shi, L. Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanosc. Microsc. Therm. 2012, 16, 79–116.CrossRefGoogle Scholar
  19. [19]
    Zhou, F.; Perrson, A.; Samuelson, L.; Linke, H.; Shi, L. Thermal resistance of a nanoscale point contact to an indium arsenide nanowire. Appl. Phys. Lett. 2011, 99, 063110.CrossRefGoogle Scholar
  20. [20]
    Mingo, N. Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires. Appl. Phys. Lett. 2004, 84, 2652–2654.CrossRefGoogle Scholar
  21. [21]
    Stuckes, A. D. Thermal conductivity of indium antimonide. Phys. Rev. 1957, 107, 427–428.CrossRefGoogle Scholar
  22. [22]
    Bowers, R.; Ure, R. W. Jr.; Bauerle, J. E.; Cornish, A. J. InAs and InSb as thermoelectric materials. J. Appl. Phys. 1959, 30, 930–934.CrossRefGoogle Scholar
  23. [23]
    Mielczarek, E. V.; Frederiske, H. P. R. Thermal conductivity of indium antimonide at low temperatures. Phys. Rev. 1959, 115, 888–891.CrossRefGoogle Scholar
  24. [24]
    Steigmeier, E. Wärmeleitfähigkeit, elektrische leitfähigkeit, Hall-effekt und thermospannung von InSb. Helv. Phys. Acta. 1961, 34, 1–28.Google Scholar
  25. [25]
    Holland, M. G. Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 1964, 134, A471–A480.CrossRefGoogle Scholar
  26. [26]
    Bhandari, C. M.; Verma, G. S. Role of longitudinal and transverse phonons in lattice thermal conductivity of GaAs and InSb. Phys. Rev. 1968, 176, 1112.CrossRefGoogle Scholar
  27. [27]
    Kosarev, V. V.; Tamarin, P. V.; Shalyt, S. S. Thermal conductivity of indium antimonide at low temperatures. Phys. Stat. Solidi (b) 1971, 44, 525–530.CrossRefGoogle Scholar
  28. [28]
    Nakwaski, W. Thermal conductivity of binary, ternary, and quaternary III-V compounds. J. Appl. Phys. 1988, 64, 159–166.CrossRefGoogle Scholar
  29. [29]
    Yamaguchi, S.; Matsumoto, T.; Yamazaki, J.; Kaiwa, N.; Yamamoto, A. Thermoelectric properties and figure of merit of a Te-Doped InSb bulk single crystal. Appl. Phys. Lett. 2005, 87, 201902.CrossRefGoogle Scholar
  30. [30]
    Vedernikov, M. V.; Uryupin, O. N.; Goltsman, B. M.; Ivanov, Y. V.; Kumzerov, Y. A. Experimental thermopower of quantum wires. MRS Proc. 2001, 691, DOI: 10.1557/PROC-691-G8.34.Google Scholar
  31. [31]
    Kumzerov, Y. A.; Smirnov, I. A.; Firsov, Y. A.; Parfen’eva, L. S.; Misiorek, H.; Mucha, J.; Jezowski, A. Thermal conductivity of ultrathin InSb semiconductor nanowires with properties of the luttinger liquid. Phys. Solid State 2006, 48, 1584–1590.CrossRefGoogle Scholar
  32. [32]
    Seol, J. H.; Moore, A. L.; Saha, S. K.; Zhou, F.; Shi, L.; Ye, Q. L.; Scheffler, R.; Mingo, N.; Yamada, T. Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. J. Appl. Phys. 2007, 101, 023706.CrossRefGoogle Scholar
  33. [33]
    Jurgilaitis, A.; Enquist, H.; Andreasson, B. P.; Persson, A. I. H.; Borg, B. M.; Caroff, P.; Dick, K. A.; Harb, M.; Linke, H.; Nüske, R. et al. Time-resolved X-ray diffraction investigation of the modified phonon dispersion in InSb nanowires. Nano Lett. 2014, 14, 541–546.CrossRefGoogle Scholar
  34. [34]
    Zhou, F.; Moore, A. L.; Pettes, M. T.; Lee, Y.; Seol, J. H.; Ye, Q. L.; Rabenberg, L.; Shi, L. Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires. J. Phys. D: Appl. Phys. 2010, 43, 025406.CrossRefGoogle Scholar
  35. [35]
    Costa, S. C.; Pizani, P. S.; Rino, J. P. Molecular dynamics simulation of dynamical properties of InSb. Phys. Rev. B 2003, 68, 073204.CrossRefGoogle Scholar
  36. [36]
    Liarokapis, E.; Anastassakis, E. Light scattering of InSb at high temperatures. Phys. Rev. B 1984, 30, 2270–2272.CrossRefGoogle Scholar
  37. [37]
    Zardo, I.; Conesa-Boj, S.; Peiro, F.; Morante, J. R.; Arbiol, J.; Uccelli, E.; Abstreiter, G.; Fontcuberta i Morral, A. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 2009, 80, 245324.CrossRefGoogle Scholar
  38. [38]
    Doerk, G. S.; Carraro, C.; Maboudian, R. Temperature dependence of Raman spectra for individual silicon nanowires. Phys. Rev. B 2009, 80, 073306.CrossRefGoogle Scholar
  39. [39]
    Pinczuk A.; Burstein, E. Raman scattering from InSb surfaces at photon energies near the E1 energy gap. Phys. Rev. Lett. 1968, 21, 1073–1075.CrossRefGoogle Scholar
  40. [40]
    Wang, X.; Xu, X. Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 2001, 73, 107–114.CrossRefGoogle Scholar
  41. [41]
    Lo, H. W; Compaan, A. Raman measurements of temperature during cw laser heating of silicon. J. Appl. Phys. 1980, 51, 1565–1568.CrossRefGoogle Scholar
  42. [42]
    Swinkels, M. Y.; van Delft, M. R.; Oliveira, D. S.; Cavalli, A.; Zardo, I.; van der Heijden, R. W.; Bakkers, E. P. A. M. Diameter dependence of the thermal conductivity of InAs nanowires. Nanotechnology 2015, 26, 385401.CrossRefGoogle Scholar
  43. [43]
    Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J. D.; Johnson, S. G. MEEP: A flexible freesoftware package for electromagnetic simulations by the FDTD method. Comp. Phys. Commun. 2010, 181, 687–702.CrossRefGoogle Scholar
  44. [44]
    Seol, J. H. Thermal and Thermoelectric Measurements of Silicon Nanoconstrictions, Supported Graphene, and Indium Antimonide Nanowires. Ph. D. Dissertation, University of Texas, TX, USA, 2009.Google Scholar
  45. [45]
    Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.CrossRefGoogle Scholar
  46. [46]
    Thunich, S.; Prechtel, L.; Spirkoska, D.; Abstreiter, G.; Fontcuberta i Morral, A.; Holleitner, A. W. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 2009, 95, 083111.CrossRefGoogle Scholar
  47. [47]
    Varghese, B.; Tamang, R.; Tok, E. S.; Mhaisalkar, S. G.; Sow, C. H. Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J. Phys. Chem. C 2010, 114, 15149–15156.CrossRefGoogle Scholar
  48. [48]
    Prechtel, L.; Padilla, M.; Erhard, N.; Karl, H.; Abstreiter, G.; Fontcuberta i Morral, A.; Holleitner, A. W. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. Nano Lett. 2012, 12, 2337–2341.CrossRefGoogle Scholar
  49. [49]
    Erhard, N.; Seifert, P.; Prechtel, L; Hertenberger, S.; Karl, H.; Abstreiter, G.; Koblmüller, G.; Holleitner, A. W. Ultrafast photocurrents and THz generation in single InAs-nanowires. Ann. Phys. 2013, 525, 180–188.CrossRefGoogle Scholar
  50. [50]
    St-Antoine, B. C.; Ménard, D.; Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 2009, 9, 3503–3508.CrossRefGoogle Scholar
  51. [51]
    St-Antoine, B. C.; Ménard, D.; Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 2012, 5, 73–81.CrossRefGoogle Scholar
  52. [52]
    Prechtel, L.; Song, L.; Manus, S.; Schuh, D.; Wegscheider, W.; Holleitner, A. W. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett. 2011, 11, 269–272.CrossRefGoogle Scholar
  53. [53]
    Prechtel, L.; Song, L.; Schuh, D.; Ajayan, P.; Wegscheider, W.; Holleitner, A. W. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 2012, 3, 646.CrossRefGoogle Scholar
  54. [54]
    Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.CrossRefGoogle Scholar
  55. [55]
    Fu, D. Y.; Zou, J. J.; Wang, K.; Zhang, R.; Yu, D.; Wu, J. Q. Electrothermal dynamics of semiconductor nanowires under local carrier modulation. Nano Lett. 2011, 11, 3809–3815.CrossRefGoogle Scholar
  56. [56]
    Yazji, S.; Zardo, I.; Soini, M.; Postorino, P.; Fontcuberta i Morral, A.; Abstreiter, G. Local modification of GaAs nanowires induced by laser heating. Nanotechnology 2011, 22, 325701.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sara Yazji
    • 1
    • 2
  • Eric A. Hoffman
    • 1
    • 2
  • Daniele Ercolani
    • 3
  • Francesco Rossella
    • 3
  • Alessandro Pitanti
    • 3
  • Alessandro Cavalli
    • 1
  • Stefano Roddaro
    • 3
  • Gerhard Abstreiter
    • 1
    • 2
  • Lucia Sorba
    • 3
  • Ilaria Zardo
    • 1
    • 4
  1. 1.Walter Schottky Institut & Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
  3. 3.NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePisaItaly
  4. 4.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations