Nano Research

, Volume 8, Issue 12, pp 3898–3904 | Cite as

Atomic resolution scanning tunneling microscope imaging up to 27 T in a water-cooled magnet

  • Wenjie Meng
  • Ying Guo
  • Yubin Hou
  • Qingyou Lu
Research Article


We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional superconducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world’s flagship magnet, producing the strongest steady magnetic field.


scanning tunneling microscopy water-cooled magnet strong magnetic field TunaDriver piezoelectric motor highly oriented pyrolytic graphite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Binnig, G.; Rohrer, H. Scanning tunneling microscopy—from birth to adolescence. Rev. Mod. Phys. 1987, 59, 615–625.CrossRefGoogle Scholar
  2. [2]
    Iwaya, K.; Shimizu, R.; Hashizume, T.; Hitosugi, T. Systematic analyses of vibration noise of a vibration isolation system for high-resolution scanning tunneling microscopes. Rev. Sci. Instrum. 2011, 82, 083702.CrossRefGoogle Scholar
  3. [3]
    Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.; René de Cotret, S.; Juneau-Fecteau, A.; Dufour-Beauséjour, S.; Delage, M. È.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J. et al. Direct measurement of the upper critical field in cuprate superconductors. Nat. Commun. 2014, 5, 3280.CrossRefGoogle Scholar
  4. [4]
    Fischer, Ø.; Kugler, M.; Maggio-Aprile, I.; Berthod, C.; Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 2007, 79, 353–419.CrossRefGoogle Scholar
  5. [5]
    Doiron-Leyraud, N.; Proust, C.; LeBoeuf, D.; Levallois, J.; Bonnemaison, J.-B.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Taillefer, L. Quantum oscillations and the fermi surface in an underdoped high-Tc superconductor. Nature 2007, 447, 565–568.CrossRefGoogle Scholar
  6. [6]
    Basov, D. N.; Chubukov, A. V. Manifesto for a higher Tc. Nat. Phys. 2011, 7, 272–276.CrossRefGoogle Scholar
  7. [7]
    Zhao, K.; Lv, Y. F.; Ji, S. H.; Ma, X. C.; Chen, X.; Xue, Q. K. Scanning tunneling microscopy studies of topological insulators. J. Phys.: Condens. Matter. 2014, 26, 394003.Google Scholar
  8. [8]
    Xiong, J.; Luo, Y. K.; Khoo, Y.; Jia, S.; Cava, R. J.; Ong, N. P. High-field shubnikov–de haas oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2012, 86, 045314.CrossRefGoogle Scholar
  9. [9]
    Taskin, A. A.; Ren, Z.; Sasaki, S.; Segawa, K.; Ando, Y. Observation of dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 2011, 107, 016801.CrossRefGoogle Scholar
  10. [10]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  11. [11]
    Dean, C. R.; Young, A. F.; Cadden-Zimansky, P.; Wang, L.; Ren, H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J.; Shepard, K. L. Multicomponent fractional quantum hall effect in graphene. Nat. Phys. 2011, 7, 693–696.CrossRefGoogle Scholar
  12. [12]
    Saarikoski, H.; Harju, A.; Puska, M. J.; Nieminen, R. M. Vortex clusters in quantum dots. Phys. Rev. Lett. 2004, 93, 116802.CrossRefGoogle Scholar
  13. [13]
    Nishizaki, T.; Kobayashi, N. Development of high-field stm for 18 T cryocooled superconducting magnet. J. Phy.: Conf. Ser. 2009, 150, 012031.Google Scholar
  14. [14]
    Wittneven, C.; Dombrowski, R.; Pan, S. H.; Wiesendanger, R. A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field. Rev. Sci. Instrum. 1997, 68, 3806.CrossRefGoogle Scholar
  15. [15]
    Roychowdhury, A.; Gubrud, M. A.; Dana, R.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Dreyer, M. A 30 mk, 13.5 T scanning tunneling microscope with two independent tips. Rev. Sci. Instrum. 2014, 85, 043706.CrossRefGoogle Scholar
  16. [16]
    Misra, S.; Zhou, B. B.; Drozdov, I. K.; Seo, J.; Urban, L.; Gyenis, A.; Kingsley, S. C. J.; Jones, H.; Yazdani, A. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 2013, 84, 103903.CrossRefGoogle Scholar
  17. [17]
    Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council. High magnetic field science and its application in the united states: current status and future directions; The National Academies Press: Washington, DC, 2013.Google Scholar
  18. [18]
    Li, Q. F.; Wang, Q.; Hou, Y. B.; Lu, Q. Y. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability. Rev. Sci. Instrum. 2012, 83, 043706.CrossRefGoogle Scholar
  19. [19]
    Wang, Q.; Hou, Y. B.; Lu, Q. Y. Note: A compact, rigid, and easy-to-build piezo motor: The intact-tube geckodrive. Rev. Sci. Instrum. 2013, 84, 056106.CrossRefGoogle Scholar
  20. [20]
    Liu, X. L.; Lu, Q. Y. A piezo motor based on a new principle with high output force, rigidity and integrity: The tuna drive. Rev. Sci. Instrum. 2012, 83, 115111.CrossRefGoogle Scholar
  21. [21]
    Guo, Y.; Hou, Y. B.; Lu, Q. Y. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force. Rev. Sci. Instrum. 2014, 85, 056108.CrossRefGoogle Scholar
  22. [22]
    Zhou, H. B.; Wang, Z.; Hou, Y. B.; Lu, Q. Y. A compact high field magnetic force microscope. Ultramicroscopy 2014, 147, 133–136.CrossRefGoogle Scholar
  23. [23]
    Wang, Q.; Lu, Q. Y. A simple, compact, and rigid piezoelectric step motor with large step size. Rev. Sci. Instrum. 2009, 80, 085104.CrossRefGoogle Scholar
  24. [24]
    Guo, Y.; Hou, Y. B.; Lu, Q. Y. An ultra-rigid close-stacked piezo motor for harsh condition scanning probe microscopy. Scanning 2014, 36, 554–9.CrossRefGoogle Scholar
  25. [25]
    Pohl, D. W. Some design criteria in scanning tunneling microscopy. IBM J. Res. Dev. 1986, 30, 417–427.CrossRefGoogle Scholar
  26. [26]
    Ast, C. R.; Assig, M.; Ast, A.; Kern, K. Design criteria for scanning tunneling microscopes to reduce the response to external mechanical disturbances. Rev. Sci. Instrum. 2008, 79, 093704.CrossRefGoogle Scholar
  27. [27]
    Wang, Q.; Hou, Y.; Wang, J. T.; Lu, Q. Y. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability. Rev. Sci. Instrum. 2013, 84, 113703.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wenjie Meng
    • 1
    • 2
  • Ying Guo
    • 1
    • 2
  • Yubin Hou
    • 1
  • Qingyou Lu
    • 1
    • 2
    • 3
    • 4
  1. 1.High Magnetic Field LaboratoryChinese Academy of Sciences and University of Science and Technology of ChinaHefeiChina
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Hefei Science CenterChinese Academy of SciencesHefeiChina
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations