Nano Research

, Volume 8, Issue 11, pp 3725–3736 | Cite as

Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions

  • Muhammad Tahir
  • Nasir Mahmood
  • Xiaoxue Zhang
  • Tariq Mahmood
  • Faheem. K. Butt
  • Imran Aslam
  • M. Tanveer
  • Faryal Idrees
  • Syed Khalid
  • Imran Shakir
  • Yiming Yan
  • Jijun Zou
  • Chuanbao Cao
  • Yanglong Hou
Research Article


Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells.


carbon nitride cobalt oxide bifunctional catalyst oxygen evolution reaction hydrogen evolution reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_872_MOESM1_ESM.pdf (4.9 mb)
Supplementary material, approximately 5062 KB.


  1. [1]
    Ali, Z.; Cao, C. B.; Li, J. L.; Wang, Y. L.; Cao, T.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F. K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216–222.CrossRefGoogle Scholar
  2. [2]
    Butt, F. K.; Tahir, M.; Cao, C. B.; Idrees, F.; Ahmed, R.; Khan, W. S.; Ali, Z.; Mahmood, N.; Tanveer, M.; Mahmood, A. et al. Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. ACS Appl. Mater. Interfaces 2014, 6, 13635–13641.CrossRefGoogle Scholar
  3. [3]
    Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.CrossRefGoogle Scholar
  4. [4]
    Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.CrossRefGoogle Scholar
  5. [5]
    Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 2013, 7, 10307–10318.CrossRefGoogle Scholar
  6. [6]
    Mahmood, N.; Hou, Y. L. Electrode nanostructures in lithium-based batteries. Adv. Sci. 2014, 1, DOI: 10.1002/advs.201400012.Google Scholar
  7. [7]
    Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfide/ nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328.CrossRefGoogle Scholar
  8. [8]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  9. [9]
    Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.CrossRefGoogle Scholar
  10. [10]
    Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.CrossRefGoogle Scholar
  11. [11]
    Qing, L.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.CrossRefGoogle Scholar
  12. [12]
    Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.CrossRefGoogle Scholar
  13. [13]
    Mahmood, N.; Zhang, C. Z.; Jiang, J.; Liu, F.; Hou, Y. L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chem.—Eur. J. 2013, 19, 5183–5190.CrossRefGoogle Scholar
  14. [14]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  15. [15]
    Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.CrossRefGoogle Scholar
  16. [16]
    Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.CrossRefGoogle Scholar
  17. [17]
    Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.CrossRefGoogle Scholar
  18. [18]
    Zhao, Y.; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 13934–13939.CrossRefGoogle Scholar
  19. [19]
    Jahan, M.; Liu, Z. L.; Loh, K. P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.CrossRefGoogle Scholar
  20. [20]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  21. [21]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  22. [22]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.CrossRefGoogle Scholar
  23. [23]
    Zhou, W. J.; Wu, X.-J.; Cao, X. H.; Huang, X.; Tan, C. L; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/ Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  24. [24]
    Tahir, M.; Cao, C. B.; Butt, F. K.; Idrees, F.; Mahmood, N.; Ali, Z.; Aslam, I.; Tanveer, M.; Rizwan, M.; Mahmood, T. Tubular graphitic-C3N4: A prospective material for energy storage and green photocatalysis. J. Mater. Chem. A 2013, 1, 13949–13955.CrossRefGoogle Scholar
  25. [25]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.CrossRefGoogle Scholar
  26. [26]
    Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem., Int. Ed. 2014, 53, 9240–9245.CrossRefGoogle Scholar
  27. [27]
    Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C.-S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010, 3, 632–642.CrossRefGoogle Scholar
  28. [28]
    Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.CrossRefGoogle Scholar
  29. [29]
    Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.CrossRefGoogle Scholar
  30. [30]
    Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 2014, 6, 1258–1265.CrossRefGoogle Scholar
  31. [31]
    Tahir, M.; Cao, C. B.; Butt, F. K.; Butt, S.; Idrees, F.; Ali, Z.; Aslam, I.; Tanveer, M.; Mahmood, A.; Mahmood, N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability. CrystEngComm 2014, 16, 1825–1830.CrossRefGoogle Scholar
  32. [32]
    Tahir, M.; Mahmood, N.; Zhu, J. H.; Mahmood, A.; Butt, F. K.; Rizwan, S.; Aslam, I.; Tanveer, M.; Idrees, F.; Shakir, I. et al. One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts. Sci. Rep. 2015, 5, 12389.CrossRefGoogle Scholar
  33. [33]
    Gogotsi, Y. What nano can do for energy storage. ACS Nano 2014, 8, 5369–5371.CrossRefGoogle Scholar
  34. [34]
    Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphenebased nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.CrossRefGoogle Scholar
  35. [35]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  36. [36]
    Zhang, C. Z.; Hao, R.; Liao, H. B.; Hou, Y. L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88–97.CrossRefGoogle Scholar
  37. [37]
    Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.CrossRefGoogle Scholar
  38. [38]
    Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.CrossRefGoogle Scholar
  39. [39]
    Mahmood, N.; Tahir, M.; Mahmood, A.; Zhu, J. H.; Cao, C. B.; Hou, Y. L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276.CrossRefGoogle Scholar
  40. [40]
    Yin, H.; Zhang, C. Z.; Liu, F.; Hou, Y. L. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2930–2937.CrossRefGoogle Scholar
  41. [41]
    Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.CrossRefGoogle Scholar
  42. [42]
    Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grü tzke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.CrossRefGoogle Scholar
  43. [43]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  44. [44]
    Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 2014, 54, 4646–4650.CrossRefGoogle Scholar
  45. [45]
    Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Muhammad Tahir
    • 1
    • 5
  • Nasir Mahmood
    • 2
  • Xiaoxue Zhang
    • 3
  • Tariq Mahmood
    • 1
  • Faheem. K. Butt
    • 1
  • Imran Aslam
    • 1
  • M. Tanveer
    • 1
  • Faryal Idrees
    • 1
  • Syed Khalid
    • 1
  • Imran Shakir
    • 4
  • Yiming Yan
    • 3
  • Jijun Zou
    • 5
  • Chuanbao Cao
    • 1
  • Yanglong Hou
    • 2
  1. 1.Research Centre of Materials ScienceBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Materials Science and EngineeringPeking UniversityBeijingChina
  3. 3.Beijing Key Laboratory for Chemical Power Source and Green Catalyst, School of Chemical Engineering and EnvironmentBeijing Institution of TechnologyBeijingChina
  4. 4.Sustainable Energy Technologies (SET) center building No 3, Room 1c23, College of EngineeringKing Saud UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations