Nano Research

, Volume 8, Issue 11, pp 3704–3714 | Cite as

Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control

  • Lourdes Rivas
  • Alfredo de la Escosura-Muñiz
  • Lorena Serrano
  • Laura Altet
  • Olga Francino
  • Armand Sánchez
  • Arben Merkoçi
Research Article


A novel triple lines lateral-flow assay (LFA) with enhanced sensitivity for the detection of Leishmania infantum DNA in dog blood samples was designed and successfully applied. The enhanced LFA methodology takes advantage of the gold nanoparticle tags (AuNPs) conjugated to polyclonal secondary antibodies, which recognize anti-FITC antibodies. The polyclonal nature of the secondary antibodies allows for multiple binding to primary antibodies, leading to enhanced AuNP plasmonics signal. Furthermore, endogenous control consisting of the amplified dog 18S rRNA gene was introduced to avoid false negatives. Using this strategy, 0.038 spiked Leishmania parasites per DNA amplification reaction (1 parasite/100 μL of DNA sample) were detected. Detection limit of LFA was found to be lower than that of the conventional techniques. In summary, our novel LFA design is a universal and simple sensing alternative that can be extended to several other biosensing scenarios.


lateral-flow assay gold nanoparticles secondary antibodies Leishmania DNA endogenous control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_870_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1200 KB.


  1. [1]
    Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450–457.CrossRefGoogle Scholar
  2. [2]
    Martin, A. J. P.; Synge, R. L. M. A new form of chromatogram employing two liquid phases. Biochem. J. 1941, 35, 1358–1368.CrossRefGoogle Scholar
  3. [3]
    Comer, J. P. Semiquantitative specific test paper for glucose in urine. Anal. Chem. 1956, 28, 1748–1750.CrossRefGoogle Scholar
  4. [4]
    Brucker, M. C.; Macmullen, N. J. What’s new in pregnancy tests. J. Obstet. Gynecol. Neonatal Nurs. 1985, 14, 353–359.CrossRefGoogle Scholar
  5. [5]
    Fernández-Sánchez, C.; McNeil, C. J.; Rawson, K.; Nilsson, O. Disposable noncompetitive immunosensor for free and total prostate-specific antigen based on capacitance measurement. Anal. Chem. 2004, 76, 5649–5656.CrossRefGoogle Scholar
  6. [6]
    Fernández-Sánchez, C.; McNeil, C. J.; Rawson, K.; Nilsson, O.; Leung, H. Y.; Gnanapragasam, V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J. Immunol. Methods 2005, 307, 1–12.CrossRefGoogle Scholar
  7. [7]
    Aveyard, J.; Mehrabi, M.; Cossins, A.; Braven, H.; Wilson, R. One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. 2007, 4251–4253.Google Scholar
  8. [8]
    Lie, P.; Liu, J.; Fang, Z. Y.; Dun, B. Y.; Zeng, L. W. A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity. Chem. Commun. 2012, 48, 236–238.CrossRefGoogle Scholar
  9. [9]
    Lattanzio, V. M. T.; Nivarlet, N.; Lippolis, V.; Della Gatta, S.; Huet, A. C.; Delahaut, P.; Granier, B.; Visconti, A. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal. Chim. Acta 2012, 718, 99–108.CrossRefGoogle Scholar
  10. [10]
    Anfossi, L.; Baggiani, C.; Giovannoli, C.; D'Arco, G.; Giraudi, G. Lateral-flow immunoassays for mycotoxins and phycotoxins: A review. Anal. Bioanal. Chem. 2013, 405, 467–480.CrossRefGoogle Scholar
  11. [11]
    Liu, J. W.; Mazumdar, D.; Lu, Y. A simple and sensitive “Dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. 2006, 118, 8123–8127.CrossRefGoogle Scholar
  12. [12]
    López Marzo, A. M.; Pons, J.; Blake, D. A.; Merkoçi, A. All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal. Chem. 2013, 85, 3532–3538.CrossRefGoogle Scholar
  13. [13]
    Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoçi, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164–4171.CrossRefGoogle Scholar
  14. [14]
    Cho, I. H.; Seo, S. M.; Paek, E. H.; Paek, S. H. Immunogoldsilver staining-on-a-chip biosensor based on cross-flow chromatography. J. Chromatogr. B 2010, 878, 271–277.CrossRefGoogle Scholar
  15. [15]
    De la Escosura-Muñiz, A.; Maltez-da Costa, M.; Merkoçi, A. Controlling the electrochemical deposition of silver onto gold nanoparticles: Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosens. Bioelectron. 2009, 24, 2475–2482.CrossRefGoogle Scholar
  16. [16]
    Choi, D. H.; Lee, S. K.; Oh, Y. K.; Bae, B. W.; Lee, S. D.; Kim, S.; Shin, Y. B.; Kim, M. G. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 2010, 25, 1999–2002.CrossRefGoogle Scholar
  17. [17]
    Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron. 2013, 40, 412–416.CrossRefGoogle Scholar
  18. [18]
    Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 2010, 82, 1151–1156.CrossRefGoogle Scholar
  19. [19]
    Chen, S.; Svedendahl, M.; Van Duyne, R. P.; Käll, M. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 2011, 11, 1826–1830.CrossRefGoogle Scholar
  20. [20]
    Juntunen, E.; Myyryläinen, T.; Salminen, T.; Soukka, T.; Pettersson, K. Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal. Biochem. 2012, 428, 31–38.CrossRefGoogle Scholar
  21. [21]
    Lin, Y. Y.; Wang, J.; Liu, G. D.; Wu, H.; Wai, C. M.; Lin, Y. H. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2008, 23, 1659–1665.CrossRefGoogle Scholar
  22. [22]
    Parolo, C.; Medina-Sánchez, M.; de la Escosura-Muñiz, A.; Merkoçi, A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay. Lab Chip 2013, 13, 386–390.CrossRefGoogle Scholar
  23. [23]
    Rivas, L.; Medina-Sánchez, M.; de la Escosura-Muñiz, A.; Merkoç i, A. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip 2014, 14, 4406–4414.CrossRefGoogle Scholar
  24. [24]
    Nunes-Pauli, G. E.; de la Escosura-Muñiz, A.; Parolo, C.; Helmuth-Bechtold, I.; Merkoçi, A. Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab Chip 2015, 15, 399–405.CrossRefGoogle Scholar
  25. [25]
    Maia, C.; Campino, L. Methods for diagnosis of canine leishmaniasis and immune response to infection. Vet. Parasitol. 2008, 158, 274–287.CrossRefGoogle Scholar
  26. [26]
    Dantas-Torres, F.; Solano-Gallego, L.; Baneth, G.; Ribeiro, V. M.; de Paiva-Cavalcanti, M.; Otranto, D. Canine leishmaniosis in the old and new worlds: Unveiled similarities and differences. Trends Parasitol. 2012, 28, 531–538.CrossRefGoogle Scholar
  27. [27]
    Ciaramella, P.; Oliva, G.; de Luna, R.; Gradoni, L.; Ambrosio, R.; Cortese, L.; Scalone, A.; Persechino, A. A retrospective clinical study of canine leishmaniasis in 150 dogs naturally infected by Leishmania infantum. Vet. Rec. 1997, 141, 539–543.Google Scholar
  28. [28]
    Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R. W.; Alvar, J.; Boelaert, M. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882.CrossRefGoogle Scholar
  29. [29]
    World Health Organization. Control of the leishmaniases. World Health Organ. Tech. Rep. Ser. 2010, 949, xii–xiii, 1–186.Google Scholar
  30. [30]
    Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M. G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit. Vectors 2011, 4, 86.CrossRefGoogle Scholar
  31. [31]
    Solano-Gallego, L.; Fernández-Bellon, H.; Morell, P.; Fondevila, D.; Alberola, J.; Ramis, A.; Ferrer, L. Histological and immunohistochemical study of clinically normal skin of Leishmania infantum-infected dogs. J. Comp. Pathol. 2004, 130, 7–12.CrossRefGoogle Scholar
  32. [32]
    De Fátima Madeira, M.; de O Schubach, A.; Schubach, T. M. P.; Pereira, S. A.; Figueiredo, F. B.; Baptista, C.; Leal, C. A.; Melo, C. X.; Confort, E. M.; Marzochi, M. C. A. Post mortem parasitological evaluation of dogs seroreactive for Leishmania from Rio de Janeiro, Brazil. Vet. Parasitol. 2006, 138, 366–370.CrossRefGoogle Scholar
  33. [33]
    Xavier, S. C.; de Andrade, H. M.; Monte, S. J. H.; Chiarelli, I. M.; Lima, W. G.; Michalick, M. S. M.; Tafuri, W. L.; Tafuri, W. L. Comparison of paraffin-embedded skin biopsies from different anatomical regions as sampling methods for detection of Leishmania infection in dogs using histological, immunohistochemical and PCR methods. BMC Vet. Res. 2006, 2, 17.CrossRefGoogle Scholar
  34. [34]
    Figueiredo, F. B.; Madeira, M. F.; Menezes, R. C.; Pacheco, R. S.; Pires, M. Q.; Furtado, M. C.; Pinto, A. G.; Schubach, T. M. P. Efficacy of an indirect immunofluorescence test in the diagnosis of canine leishmaniosis. Vet. J. 2010, 186, 123–124.CrossRefGoogle Scholar
  35. [35]
    Marcondes, M.; Biondo, W.; Gomes, A. A. D.; Silva, A. R. S.; Vieira, R. F. C.; Camacho, A. A.; Quinn, J.; Chandrashekar, R. Validation of a Leishmania infantum ELISA rapid test for serological diagnosis of Leishmania chagasi in dogs. Vet. Parasitol. 2011, 175, 15–19.CrossRefGoogle Scholar
  36. [36]
    Reithinger, R.; Dujardin, J. C. Molecular diagnosis of leishmaniasis: Current status and future applications. J. Clin. Microbiol. 2007, 45, 21–25.CrossRefGoogle Scholar
  37. [37]
    Srividya, G.; Kulshrestha, A.; Singh, R.; Salotra, P. Diagnosis of visceral leishmaniasis: Developments over the last decade. Parasitol. Res. 2012, 110, 1065–1078.CrossRefGoogle Scholar
  38. [38]
    Deborggraeve, S.; Laurent, T.; Espinosa, D.; Van der Auwera, G.; Mbuchi, M.; Wasunna, M.; El-Safi, S.; Al-Basheer, A. A.; Arévalo, J.; Miranda-Verástegui, C. et al. A simplified and standardized polymerase chain reaction format for the diagnosis of leishmaniasis. J. Infect. Dis. 2008, 198, 1565–1572.CrossRefGoogle Scholar
  39. [39]
    Lombardo, G.; Pennisi, M. G.; Lupo, T.; Migliazzo, A.; Caprì, A.; Solano-Gallego, L. Detection of Leishmania infantum DNA by real-time PCR in canine oral and conjunctival swabs and comparison with other diagnostic techniques. Vet. Parasitol. 2012, 184, 10–17.CrossRefGoogle Scholar
  40. [40]
    Naranjo, C.; Fondevila, D.; Altet, L.; Francino, O.; Ríos, J.; Roura, X.; Peña, T. Evaluation of the presence of Leishmania spp. by real-time PCR in the lacrimal glands of dogs with leishmaniosis. Vet. J. 2012, 193, 168–173.CrossRefGoogle Scholar
  41. [41]
    Van der Meide, W.; Guerra, J.; Schoone, G.; Farenhorst, M.; Coelho, L.; Faber, W.; Peekel, I.; Schallig, H. Comparison between quantitative nucleic acid sequence-based amplification, real-time reverse transcriptase PCR, and real-time PCR for quantification of Leishmania parasites. J. Clin. Microbiol. 2008, 46, 73–78.CrossRefGoogle Scholar
  42. [42]
    Rodríguez-Cortésa, A.; Ojeda, A.; López-Fuertes, L.; Timón, M.; Altet, L.; Solano-Gallego, L.; Sánchez-Robert, E.; Francino, O.; Alberola, J. A long term experimental study of canine visceral leishmaniasis. Int. J. Parasitol. 2007, 37, 683–693.CrossRefGoogle Scholar
  43. [43]
    Salotra, P.; Sreenivas, G.; Ramesh, V.; Sundar, S. A simple and sensitive test for field diagnosis of post kala-azar dermal leishmaniasis. Br. J. Dermatol. 2001, 145, 630–632.CrossRefGoogle Scholar
  44. [44]
    Chappuis, F.; Mueller, Y.; Nguimfack, A.; Rwakimari, J. B.; Couffignal, S.; Boelaert, M.; Cavailler, P.; Loutan, L.; Piola, P. Diagnostic accuracy of two rK39 antigen-based dipsticks and the formol gel test for rapid diagnosis of visceral leishmaniasis in northeastern Uganda. J. Clin. Microbiol. 2005, 43, 5973–5977.CrossRefGoogle Scholar
  45. [45]
    Sundar, S.; Maurya, R.; Singh, R. K.; Bharti, K.; Chakravarty, J.; Parekh, A.; Rai, M.; Kumar, K.; Murray, H. W. Rapid, noninvasive diagnosis of visceral leishmaniasis in India: Comparison of two immunochromatographic strip tests for detection of anti-K39 antibody. J. Clin. Microbiol. 2006, 44, 251–253.CrossRefGoogle Scholar
  46. [46]
    Welch, R. J.; Anderson, B. L.; Litwin, C. M. Rapid immunochromatographic strip test for detection of anti-K39 immunoglobulin G antibodies for diagnosis of visceral leishmaniasis. Clin. Vaccine Immunol. 2008, 15, 1483–1484.CrossRefGoogle Scholar
  47. [47]
    CorisBioconcept. Leishmania spp.. Products/Molecular-Field/Leishmania.php (accessed May 19, 2015).Google Scholar
  48. [48]
    Francino, O.; Altet, L.; Sánchez-Robert, E.; Rodriguez, A.; Solano-Gallego, L.; Alberola, J.; Ferrer, L.; Sánchez, A.; Roura, X. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet. Parasitol. 2006, 137, 214–221.CrossRefGoogle Scholar
  49. [49]
    TwistDx Ltd.. Revolutionary DNA detection. http://www. (accessed May 19, 2015).Google Scholar
  50. [50]
    Turkevich, J.; Stevenson, P. C.; Hillie, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.CrossRefGoogle Scholar
  51. [51]
    Crowther, J. R. The ELISA Guidebook; Humana Press: New Jersey, 2001; pp 421.Google Scholar
  52. [52]
    Wong, R.; Tse, H. Lateral Flow Immunoassay; Humana Press: Totowa, NJ,2009; pp 236.CrossRefGoogle Scholar
  53. [53]
    Merck Millipore. Lateral Flow Membranes. Lxi,nav?bd=1 (accessed May 19, 2015).Google Scholar
  54. [54]
    Molinelli, A.; Grossalber, K.; Führer, M.; Baumgartner, S.; Sulyok, M.; Krska, R. Development of qualitative and semiquantitative immunoassay-based rapid strip tests for the detection of T-2 toxin in wheat and oat. J. Agric. Food Chem. 2008, 56, 2589–2594.CrossRefGoogle Scholar
  55. [55]
    Farhat Basir, S. Textbook of Immunology; PHI Learning: New Delhi, 2009; pp 256.Google Scholar
  56. [56]
    Liu, J. W.; Mazumdar, D.; Lu, Y. A simple and sensitive “Dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem., Int. Ed. 2006, 45, 7955–7959.CrossRefGoogle Scholar
  57. [57]
    Hua, X. D.; Yang, J. F.; Wang, L. M.; Fang, Q. K.; Zhang, G. P.; Liu, F. Q. Development of an enzyme linked immunosorbent assay and an immunochromatographic assay for detection of organophosphorus pesticides in different agricultural products. PLoS One 2012, 7, e53099.CrossRefGoogle Scholar
  58. [58]
    Mettler, M.; Grimm, F.; Capelli, G.; Camp, H.; Deplazes, P. Evaluation of enzyme-linked immunosorbent assays, an immunofluorescent-antibody test, and two rapid tests (immunochromatographic-dipstick and gel tests) for serological diagnosis of symptomatic and asymptomatic Leishmania infections in dogs. J. Clin. Microbiol. 2005, 43, 5515–5519.CrossRefGoogle Scholar
  59. [59]
    Carson, C.; Quinnell, R. J.; Holden, J.; Garcez, L. M.; Deborggraeve, S.; Courtenay, O. Comparison of Leishmania oligoC-test PCR with conventional and real-time PCR for diagnosis of Canine Leishmania Infection. J. Clin. Microbiol. 2010, 48, 3325–3330.CrossRefGoogle Scholar
  60. [60]
    Mugasa, C. M.; Laurent, T.; Schoone, G. J.; Basiye, F. L.; Saad, A. A.; El Safi, S.; Kager, P. A.; Schallig, H. D. Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis. Parasit. Vectors 2010, 3, 13.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lourdes Rivas
    • 1
    • 2
  • Alfredo de la Escosura-Muñiz
    • 1
  • Lorena Serrano
    • 3
  • Laura Altet
    • 3
  • Olga Francino
    • 2
    • 3
  • Armand Sánchez
    • 2
    • 4
  • Arben Merkoçi
    • 1
    • 5
  1. 1.ICN2–Nanobioelectronics & Biosensors GroupInstitut Catala de Nanociencia i Nanotecnologia, Campus UABBellaterra (Barcelona)Spain
  2. 2.Autonomous University of Barcelona, Campus UABBellaterra (Barcelona)Spain
  3. 3.Vetgenomics, Edifici EurekaParc de Recerca UABBellaterra (Barcelona)Spain
  4. 4.Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB, Campus UABCataloniaSpain
  5. 5.ICREA - Institucio Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations