Skip to main content
Log in

Interlayer interactions in anisotropic atomically thin rhenium diselenide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we study the interlayer phonon vibration modes, the layer-numberdependent optical bandgap, and the anisotropic photoluminescence (PL) spectra of atomically thin rhenium diselenide (ReSe2) for the first time. The ultralow frequency interlayer Raman spectra and the polarization-resolved high frequency Raman spectra in ReSe2 allow the identification of its layer number and crystal orientation. Furthermore, PL measurements show the anisotropic optical emission intensity of the material with its bandgap increasing from 1.26 eV in the bulk to 1.32 eV in the monolayer. The study of the layer-number dependence of the Raman modes and the PL spectra reveals relatively weak van der Waal’s interaction and two-dimensional (2D) quantum confinement in the atomically thin ReSe2. The experimental observation of the intriguing anisotropic interlayer interaction and tunable optical transition in monolayer and multilayer ReSe2 establishes the foundation for further exploration of this material in the development of anisotropic optoelectronic devices functioning in the near-infrared spectrum, which is important for many applications in optical communication and infrared sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  2. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  3. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  4. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  Google Scholar 

  5. Lee, Y.-H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.

    Google Scholar 

  6. Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

    Article  Google Scholar 

  7. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    Article  Google Scholar 

  8. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  9. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  10. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  11. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  Google Scholar 

  12. Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S.-J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424–6429.

    Article  Google Scholar 

  13. Haratipour, N.; Robbins, M. C.; Koester, S. J. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electr. Device Lett. 2015, 36, 411–413.

    Article  Google Scholar 

  14. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguideintegrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247–252.

    Google Scholar 

  15. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  Google Scholar 

  16. Low, T.; Rodin, A. S.; Carvalho, A.; Jiang, Y. J.; Wang, H.; Xia, F. N.; Neto, A. H. C. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 2014, 90, 075434.

    Article  Google Scholar 

  17. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899–907.

    Article  Google Scholar 

  18. Zhao, H.; Guo, Q. S.; Xia, F. N.; Wang, H. Two-dimensional materials for nanophotonics application. Nanophotonics, in press, DOI: 10.1515/nanoph-2014-0022.

  19. Fei, R. X.; Faghaninia, A.; Soklaski, R.; Yan, J.-A.; Lo, C.; Yang, L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 2014, 14, 6393–6399.

    Article  Google Scholar 

  20. Lamfers, H.-J.; Meetsma, A.; Wiegers, G.; De Boer, J. The crystal structure of some rhenium and technetium dichalcogenides. J. Alloy. Compd. 1996, 241, 34–39.

    Article  Google Scholar 

  21. Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

    Article  Google Scholar 

  22. Fang, C. M.; Wiegers, G. A.; Haas, C.; De Groot, R. A. Electronic structures of ReS2, ReS2 and TcS2 in the real and the hypothetical undistorted structures. J. Phys.: Condens. Matter 1997, 9, 4411–4424.

    Google Scholar 

  23. Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J.-B.; Li, S.-S.; Li, J. B.; Wei, S.-H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231.

    Article  Google Scholar 

  24. Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.-S.; Ho, C.-H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

    Article  Google Scholar 

  25. Friemelt, K.; Lux-Steiner, M. C.; Bucher, E. Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane. J. Appl. Phys. 1993, 74, 5266–5268.

    Article  Google Scholar 

  26. Ho, C. H.; Huang, Y. S.; Tiong, K. K.; Liao, P. C. Absorptionedge anisotropy in ReS2 and ReSe2 layered semiconductors. Phys. Rev. B 1998, 58, 16130–16135.

    Article  Google Scholar 

  27. Ho, C. H.; Huang, Y. S.; Tiong, K. K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloy. Compd. 2001, 317–318, 222–226.

    Article  Google Scholar 

  28. Ho, C.-H. Dichroic electro-optical behavior of rhenium sulfide layered crystal. Crystal Struct. Theory Appl. 2013, 2, 65–69.

    Article  Google Scholar 

  29. Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.-S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

    Article  Google Scholar 

  30. Jian, Y.-C.; Lin, D.-Y.; Wu, J.-S.; Huang, Y.-S. Optical and electrical properties of Au- and Ag-doped ReSe2. Jpn. J. Appl. Phys. 2013, 52, 04CH06.

    Article  Google Scholar 

  31. Kao, Y.-C.; Huang, T.; Lin, D.-Y.; Huang, Y.-S.; Tiong, K.-K.; Lee, H.-Y.; Lin, J.-M.; Sheu, H.-S.; Lin, C.-M. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys. 2012, 137, 024509.

    Article  Google Scholar 

  32. Yang, S. X.; Tongay, S.; Yue, Q.; Li, Y. T.; Li, B.; Lu, F. Y. High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 2014, 4, 5442.

    Google Scholar 

  33. Pickett, W. E. Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 1989, 9, 115–197.

    Article  Google Scholar 

  34. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  35. Alcock, N. W.; Kjekshus, A. The crystal structure of ReSe2. Acta Chem. Scand. 1965, 19, 79–94.

    Article  Google Scholar 

  36. Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat Mater 2012, 11, 294–300.

    Article  Google Scholar 

  37. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

    Article  Google Scholar 

  38. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    Article  Google Scholar 

  39. Tan, P.-H.; Wu, J.-B.; Han, W.-P.; Zhao, W.-J.; Zhang, X.; Wang, H.; Wang, Y.-F. Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges. Phys. Rev. B 2014, 89, 235404.

    Article  Google Scholar 

  40. Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Observation of low-frequency interlayer breathing modes in few-layer black phosphorus. 2015, arXiv: materials science/1502.07804. arXiv.org e-Print archive. http://archiv.org/abs/1502.07804.

    Google Scholar 

  41. Wu, J.-B.; Zhang, X.; Ijäs, M.; Han, W.-P.; Qiao, X.-F.; Li, X.-L.; Jiang, D.-S.; Ferrari, A. C.; Tan, P.-H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

    Article  Google Scholar 

  42. Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    Article  Google Scholar 

  43. Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

    Article  Google Scholar 

  44. Li, X. L.; Qiao, X. F.; Han, W.-P.; Lu, Y.; Tan, Q.-H.; Liu, X.-L.; Tan, P. H. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates. Nanoscale 2015, 7, 8135–8141.

    Article  Google Scholar 

  45. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  46. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  47. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    Article  Google Scholar 

  48. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    Article  Google Scholar 

  49. Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Acs Nano 2012, 7, 791–797.

    Article  Google Scholar 

  50. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  51. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. 2014, arXiv: mesoscale and nanoscale physics/1411.1695. arXiv.org e-Print archive. http://archiv.org/abs/1411.1695.

    Google Scholar 

  52. Li, Z.; Chang, S.-W.; Chen, C.-C.; Cronin, S. B. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Res. 2014, 7, 973–980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingheng Tan or Han Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wu, J., Zhong, H. et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 8, 3651–3661 (2015). https://doi.org/10.1007/s12274-015-0865-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0865-0

Keywords

Navigation