Advertisement

Nano Research

, Volume 8, Issue 9, pp 3020–3026 | Cite as

Hole-doping of mechanically exfoliated graphene by confined hydration layers

  • Tjeerd R. J. Bollmann
  • Liubov Yu. Antipina
  • Matthias Temmen
  • Michael Reichling
  • Pavel B. Sorokin
Research Article

Abstract

By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CaF2(111). Hydration layers confined between the graphene and the CaF2 substrate, resulting from the graphene’s preparation under ambient conditions on the hydrophilic substrate surface, are found to electronically modify the graphene as the material’s electron density transfers from graphene to the hydration layer. Density functional theory (DFT) calculations predict that the first 2 to 3 water layers adjacent to the graphene hole-dope the graphene by several percent of a unit charge per unit cell.

Keywords

graphene non-contact atomic force microscopy (NC-AFM, KPFM) liquid-solid interface structure electronic transport in nanoscale materials and structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Tang, D.-M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. S.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun. 2014, 5, 3631.Google Scholar
  3. [3]
    Song, J.; Ko, T. Y.; Ryu, S. Raman spectroscopy study of annealing-induced effects on graphene prepared by micromechanical exfoliation. Bull Korean Chem Soc 2010, 31, 2679–2682.CrossRefGoogle Scholar
  4. [4]
    Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.CrossRefGoogle Scholar
  5. [5]
    Cao, P. G.; Xu, K.; Varghese, J. O.; Heath, J. R. The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett 2011, 11, 5581–5586.CrossRefGoogle Scholar
  6. [6]
    He, K. T.; Wood, J. D.; Doidge, G. P.; Pop, E.; Lyding, J. W. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett 2012, 12, 2665–2672.CrossRefGoogle Scholar
  7. [7]
    Komurasaki, H.; Tsukamoto, T.; Yamazaki, K.; Ogino, T. Layered structures of interfacial water and their effects on Raman spectra in graphene-on-sapphire systems. J. Phys. Chem. C 2012, 116, 10084–10089.CrossRefGoogle Scholar
  8. [8]
    Lee, M. J.; Choi, J. S.; Kim, J.-S.; Byun, I.-S.; Lee, D. H.; Ryu, S.; Lee, C.; Park, B. H. Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res. 2012, 5, 710–717.CrossRefGoogle Scholar
  9. [9]
    Severin, N.; Lange, P.; Sokolov, I. M.; Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene/mica slit pore. Nano Lett. 2012, 12, 774–779.CrossRefGoogle Scholar
  10. [10]
    Shim, J.; Lui, C. H.; Ko, T. Y.; Yu, Y.-J.; Kim, P.; Heinz, T. F. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 2012, 12, 648–654.CrossRefGoogle Scholar
  11. [11]
    Verdaguer, A.; Sequra, J. J.; López-Mir, L.; Sauthier, G.; Fraxedas, J. Communication: Growing room temperature ice with graphene. J. Chem. Phys. 2013, 138, 121101.CrossRefGoogle Scholar
  12. [12]
    Temmen, M.; Ochedowski, O.; Schleberger, M.; Reichling, M.; Bollmann. T. R. J. Hydration layers trapped between graphene and a hydrophilic substrate. New J. Phys. 2014, 16, 053039.CrossRefGoogle Scholar
  13. [13]
    Goncher, S. J.; Zhao, L. Y.; Pasupathy, A. N.; Flynn, G. W. Substrate level control of the local doping in graphene. Nano Lett. 2013, 13, 1386–1392.Google Scholar
  14. [14]
    Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.CrossRefGoogle Scholar
  15. [15]
    Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.CrossRefGoogle Scholar
  16. [16]
    Lübbe, J.; Tröger, L.; Torbrügge, S.; Bechstein, R.; Richter, C.; Kühnle, A.; Reichling, M. Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy. Meas. Sci. Technol. 2010, 21, 125501.CrossRefGoogle Scholar
  17. [17]
    Lübbe, J.; Doering, L.; Reichling, M. Precise determination of force microscopy cantilever stiffness from dimensions and eigenfrequencies. Meas. Sci. Technol. 2012, 23, 045401.CrossRefGoogle Scholar
  18. [18]
    Lübbe, J.; Temmen, M.; Rode, S.; Rahe, P.; Kühnle, A.; Reichling, M. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein J. Nanotechnol. 2013, 4, 32–44.CrossRefGoogle Scholar
  19. [19]
    Nonnenmacher, M.; O’ Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.CrossRefGoogle Scholar
  20. [20]
    Weaver, J. M. R.; Abraham, D. W. High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B 1991, 9, 1559–1561.CrossRefGoogle Scholar
  21. [21]
    Frolov, V. D.; Pivovarov, P. A.; Zavedeev, E. V.; Khomich, A. A.; Grigorenko, A. N.; Konov, V. I. Laser-induced local profile transformation of multilayered graphene on a substrate. Opt. Laser Technol. 2015, 69, 34–38.CrossRefGoogle Scholar
  22. [22]
    Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.CrossRefGoogle Scholar
  23. [23]
    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.Google Scholar
  24. [24]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  25. [25]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  26. [26]
    Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.CrossRefGoogle Scholar
  27. [27]
    Kresse, G.; Furthermüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  28. [28]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  29. [29]
    Reischl, B.; Watkins, M.; Foster, A. S. Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comput. 2013, 9, 600–608.CrossRefGoogle Scholar
  30. [30]
    Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A.; Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.CrossRefGoogle Scholar
  31. [31]
    Nosè, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.CrossRefGoogle Scholar
  32. [32]
    Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.CrossRefGoogle Scholar
  33. [33]
    Pieper, H. H.; Barth, C.; Reichling, M. Characterization of atomic step structures on CaF2(111) by their electric potential. Appl. Phys. Lett. 2012, 101, 051601.CrossRefGoogle Scholar
  34. [34]
    Filleter, T.; Emtsev, K. V.; Seyller, T.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.CrossRefGoogle Scholar
  35. [35]
    Russ, J. C. The Image Processing Handbook (5th Ed.); CRC Press: Boca Raton, 2006.CrossRefGoogle Scholar
  36. [36]
    Bader, R. F. W. Atoms in molecules. In Encyclopedia of Computational Chemistry. von Ragué Schleyer, P., Ed.; Wiley: New York, 1990.Google Scholar
  37. [37]
    Wang, F.; Zhang, Y. B.; Tian, C. S.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. G. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209.CrossRefGoogle Scholar
  38. [38]
    Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van der Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.CrossRefGoogle Scholar
  39. [39]
    Latil, S.; Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 2006, 97, 036803.CrossRefGoogle Scholar
  40. [40]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  41. [41]
    Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.CrossRefGoogle Scholar
  42. [42]
    Ziegler, D.; Gava, P.; Gü ttinger, J.; Molitor, F.; Wirtz, L.; Lazzeri, M.; Saitta, A. M.; Stemmer, A.; Mauri, F.; Stampfer, C. Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys. Rev. B 2011, 83, 235434.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tjeerd R. J. Bollmann
    • 1
    • 2
  • Liubov Yu. Antipina
    • 3
    • 4
  • Matthias Temmen
    • 2
  • Michael Reichling
    • 2
  • Pavel B. Sorokin
    • 5
  1. 1.Inorganic Materials ScienceMESA+ Institute for NanotechnologyEnschedeThe Netherlands
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
  4. 4.Siberian Federal UniversityKrasnoyarskRussian Federation
  5. 5.National University of Science and Technology MISiSMoscowRussian Federation

Personalised recommendations