Advertisement

Nano Research

, Volume 8, Issue 9, pp 2935–2945 | Cite as

Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations

  • Tun Seng Herng
  • Wen Xiao
  • Sock Mui Poh
  • Feizhou He
  • Ronny Sutarto
  • Xiaojian Zhu
  • Runwei Li
  • Xinmao Yin
  • Caozheng Diao
  • Yang Yang
  • Xuelian Huang
  • Xiaojiang Yu
  • Yuan Ping Feng
  • Andrivo Rusydi
  • Jun Ding
Research Article

Abstract

Magnetite Fe3O4 (ferrite) has attracted considerable interest for its exceptional physical properties: It is predicted to be a semimetallic ferromagnetic with a high Curie temperature, it displays a metal-insulator transition, and has potential oxide-electronics applications. Here, we fabricate a high-magnetization (> 1 Tesla) high-resistance (~0.1 Ω·cm) sub-nanostructured (grain size < 3 nm) Fe3O4 film via grain-size control and nano-engineering. We report a new phenomenon of spin-flipping of the valence-spin tetrahedral Fe3+ in the sub-nanostructured Fe3O4 film, which produces the high magnetization. Using soft X-ray magnetic circular dichroism and soft X-ray absorption, both at the Fe L3,2- and O K-edges, and supported by first-principles and charge-transfer multiple calculations, we observe an anomalous enhancement of double exchange, accompanied by a suppression of the superexchange interactions because of the spin-flipping mechanism via oxygen at the grain boundaries. Our result may open avenues for developing spin-manipulated giant magnetic Fe3O4-based compounds via nano-grain size control.

Keywords

magnetite X-ray magnetic circular dichroism (XMCD) giant magnetization nanostructured-Fe3O4 ferrite spin-flipping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_798_MOESM1_ESM.pdf (4 mb)
Supplementary material, approximately 4047 KB.

References

  1. [1]
    Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842.CrossRefGoogle Scholar
  2. [2]
    Smith, J.; Wijn, H. P. J. Ferrites; Philips’ Technical Library: Eindhoven, Holland, 1959.Google Scholar
  3. [3]
    Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328.CrossRefGoogle Scholar
  4. [4]
    Senn, M. S.; Wright, J. P.; Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 2012, 481, 173–176.CrossRefGoogle Scholar
  5. [5]
    Walz, F. The Verwey transition - A topical review. J. Phys.- Condes. Matter 2002, 14, R285–R340.CrossRefGoogle Scholar
  6. [6]
    Arora, S. K.; Wu, H.-C.; Choudhary, R. J.; Shvets, I. V.; Mryasov, O. N.; Yao, H. Z.; Ching, W. Y. Giant magnetic moment in epitaxial Fe3O4 thin films on MgO(100). Phys. Rev. B 2008, 77, 134443.CrossRefGoogle Scholar
  7. [7]
    Orna, J.; Algarabel, P. A.; Morellón, L.; Pardo, J. A.; de Teresa, J. M.; López Antón, R.; Bartolomé, F.; García, L. M.; Bartolomé, J.; Cezar, J. C. et al. Origin of the giant magnetic moment in epitaxial Fe3O4 thin films. Phys. Rev. B 2010, 81, 144420.CrossRefGoogle Scholar
  8. [8]
    Krycka, K. L.; Borchers, J. A.; Booth, R. A.; Ijiri, Y.; Hasz, K.; Rhyne, J. J.; Majetich, S. A. Origin of surface canting within Fe3O4 nanoparticles. Phys. Rev. Lett. 2014, 113, 147203.CrossRefGoogle Scholar
  9. [9]
    Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195–3202.CrossRefGoogle Scholar
  10. [10]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  11. [11]
    Stöhr, J.; Siegmann, H. C. Magnetism: From fundamentals to nanoscale dynamics; Springer-Verlag: Berlin, 2006.Google Scholar
  12. [12]
    Kuiper, P.; Searle, B. G.; Duda, L.-C.; Wolf, R. M.; van der Zaag, P. J. Fe L2,3 linear and circular magnetic dichroism of Fe3O4. J. Electron. Spectrosc. 1997, 86, 107–113.CrossRefGoogle Scholar
  13. [13]
    de Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; Taylor & Francis: New York, 2008.CrossRefGoogle Scholar
  14. [14]
    Stavitski, E.; de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41, 687–694.CrossRefGoogle Scholar
  15. [15]
    Jeng, H.-T.; Guo, G. Y.; Huang, D. J. Charge-orbital ordering and Verwey transition in magnetite. Phys. Rev. Lett. 2004, 93, 156403.CrossRefGoogle Scholar
  16. [16]
    Luo, J. T.; Yang, Y. C.; Zhu, X. Y.; Chen, G.; Zeng, F.; Pan, F. Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys. Rev. B 2010, 82, 014116.CrossRefGoogle Scholar
  17. [17]
    Cheng, C. Structure and magnetic properties of the Fe3O4 (001) surface: Ab initio studies. Phys. Rev. B 2005, 71, 052401.CrossRefGoogle Scholar
  18. [18]
    Pentcheva, R.; Wendler, F.; Meyerheim, H. L.; Moritz, W.; Jedrecy, N.; Scheffler, M. Jahn-Teller stabilization of a “polar” metal oxide surface: Fe3O4(001). Phys. Rev. Lett. 2005, 94, 126101.CrossRefGoogle Scholar
  19. [19]
    Eerenstein, W.; Palstra, T. T. M.; Hibma, T.; Celotto, S. Origin of the increased resistivity in epitaxial Fe3O4 films. Phys. Rev. B 2002, 66, 201101.CrossRefGoogle Scholar
  20. [20]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  21. [21]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  22. [22]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefGoogle Scholar
  23. [23]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  24. [24]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  25. [25]
    Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tun Seng Herng
    • 1
    • 2
  • Wen Xiao
    • 1
  • Sock Mui Poh
    • 2
    • 3
  • Feizhou He
    • 5
  • Ronny Sutarto
    • 5
  • Xiaojian Zhu
    • 6
  • Runwei Li
    • 6
  • Xinmao Yin
    • 2
    • 3
    • 4
  • Caozheng Diao
    • 2
  • Yang Yang
    • 1
  • Xuelian Huang
    • 1
  • Xiaojiang Yu
    • 2
  • Yuan Ping Feng
    • 4
  • Andrivo Rusydi
    • 2
    • 3
    • 4
  • Jun Ding
    • 1
  1. 1.Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Synchrotron Light SourceNational University of SingaporeSingaporeSingapore
  3. 3.NUSNNI-Nanocore, Department of PhysicsNational University of SingaporeSingaporeSingapore
  4. 4.Department of PhysicsNational University of SingaporeSingaporeSingapore
  5. 5.Canadian Light SourceSaskatoon, SaskatchewanCanada
  6. 6.Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringNingboChina

Personalised recommendations