Nano Research

, Volume 8, Issue 9, pp 2925–2934 | Cite as

Facet selective etching of Au microcrystallites

  • Gangaiah Mettela
  • Giridhar U. KulkarniEmail author
Research Article


High-symmetry crystals exhibit isotropic properties. Inducing anisotropy, e.g., by facet selective etching, is considered implausible in face-centered cubic (FCC) metals, particularly gold, which, in addition to being an FCC, is noble. We report for the first time the facet selective etching of Au microcrystals obtained in the form of cuboctahedra and pentagonal rods from the thermolysis of a goldorganic precursor. The selective etching of {111} and {100} facets was achieved using a capping method in which tetraoctylammonium cations selectively cap the {111} facets while Br ions protect the {100} facets. The exposed facets are oxidized by O2/Cl, yielding a variety of interesting geometries. The facet selective etching of the Au microcrystallites is governed only by the nature of the facets; the geometry of the microcystallite does not appear to play a significant role. The etched surfaces appear rough, but a closer examination reveals well-defined corrugations that are indexable to high hkl values. Such surfaces exhibit enhanced Raman activity.


gold microcrystallites facet selective etching capping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_797_MOESM1_ESM.pdf (4.6 mb)
Supplementary material, approximately 4.60 MB.


  1. [1]
    Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc., 1990, 137 3612–3626.CrossRefGoogle Scholar
  2. [2]
    Leancu, R.; Moldovan, N.; Csepregi, L.; Lang, W. Anisotropic etching of germanium. Sensor. Actuat. A-Phys, 1995, 46 35–37.CrossRefGoogle Scholar
  3. [3]
    Ng, H. M.; Weimann, N. G.; Chowdhury, A. GaN nanotip pyramids formed by anisotropic etching. J. Appl. Phys., 2003, 94 650–653.CrossRefGoogle Scholar
  4. [4]
    Kan, C. X.; Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.; Shi, D. N. Gold microplates with well-defined shapes. Small, 2010, 6 1768–1775.CrossRefGoogle Scholar
  5. [5]
    Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev., 2002, 102 679–726.CrossRefGoogle Scholar
  6. [6]
    Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett., 2008, 458 113–116.CrossRefGoogle Scholar
  7. [7]
    Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc., 2013, 135 11752–11755.CrossRefGoogle Scholar
  8. [8]
    Meena, S. K.; Sulpizi, M. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Langmuir, 2013, 29 14954–14961.CrossRefGoogle Scholar
  9. [9]
    Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. J. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chem. Soc. Rev., 2014, 43 6288–6310.CrossRefGoogle Scholar
  10. [10]
    Kou, X. S.; Ni, W. H.; Tsung, C.-K.; Chan, K.; Lin, H.-Q.; Stucky, G. D.; Wang, J. F. Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small, 2007, 3 2103–2113.CrossRefGoogle Scholar
  11. [11]
    Rodríguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzá n, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B, 2005, 109 14257–14261.CrossRefGoogle Scholar
  12. [12]
    Zou, R. X.; Guo, X.; Yang, J.; Li, D. D.; Peng, F.; Zhang, L.; Wang, H. J.; Yu, H. Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm, 2009, 11 2797–2803.CrossRefGoogle Scholar
  13. [13]
    Chen, Z. P.; Liu, R. L.; Wang, S. S.; Qu, C. L.; Chen, L. X.; Wang, Z. Colorimetric sensing of copper(II) based on catalytic etching of gold nanorods. RSC Adv., 2013, 3 13318–13323.CrossRefGoogle Scholar
  14. [14]
    Wen, T.; Zhang, H.; Tang, X. P.; Chu, W. G.; Liu, W. Q.; Ji, Y. L.; Hu, Z. J.; Hou, S.; Hu, X. N.; Wu, X. C. Copper ion assisted reshaping and etching of gold nanorods: Mechanism studies and applications. J. Phys. Chem. C, 2013, 117 25769–25777.CrossRefGoogle Scholar
  15. [15]
    Dai, D. G.; Xu, D.; Cheng, X. D.; He, Y. Direct imaging of single gold nanoparticle etching: Sensitive detection of lead ions. Anal. Methods, 2014, 6 4507–4511.CrossRefGoogle Scholar
  16. [16]
    Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc., 2009, 132 268–274.CrossRefGoogle Scholar
  17. [17]
    Zhang, J. F.; Feng, C.; Deng, Y. D.; Liu, L.; Wu, Y. T.; Shen, B.; Zhong, C.; Hu, W. B. Shape-controlled synthesis of palladium single-crystalline nanoparticles: The effect of hcl oxidative etching and facet-dependent catalytic properties. Chem. Mater., 2014, 26 1213–1218.CrossRefGoogle Scholar
  18. [18]
    Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir, 2002, 18 922–927.CrossRefGoogle Scholar
  19. [19]
    Shao, J. R.; Josephs, E. A.; Lee, C.; Lopez, A.; Ye, T. Electrochemical etching of gold within nanoshaved selfassembled monolayers. ACS Nano, 2013, 7 5421–5429.CrossRefGoogle Scholar
  20. [20]
    Ye, S.; Ishibashi, C.; Uosaki, K. Anisotropic dissolution of an Au(111) electrode in perchloric acid solution containing chloride anion investigated by in situ STM-The important role of adsorbed chloride anion. Langmuir, 1999, 15 807–812.CrossRefGoogle Scholar
  21. [21]
    Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Body-or tipcontrolled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir, 2007, 23 9463–9471.CrossRefGoogle Scholar
  22. [22]
    Saa, L.; Coronado-Puchau, M.; Pavlov, V.; Liz-Marzan, L. M. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale, 2014, 6 7405–7409.CrossRefGoogle Scholar
  23. [23]
    Tsung, C. K.; Kou, X. S.; Shi, Q. H.; Zhang, J. P.; Yeung, M. H.; Wang, J. F.; Stucky, G. D. Selective shortening of singlecrystalline gold nanorods by mild oxidation. J. Am. Chem. Soc., 2006, 128 5352–5353.CrossRefGoogle Scholar
  24. [24]
    Fan, N. N.; Yang, Y.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano, 2012, 6 4072–4082.CrossRefGoogle Scholar
  25. [25]
    Radha, B.; Arif, M.; Datta, R.; Kundu, T. K.; Kulkarni, G. U. Movable Au microplates as fluorescence enhancing substrates for live cells. Nano Res., 2010, 3 738–747.CrossRefGoogle Scholar
  26. [26]
    Radha, B.; Kulkarni, G. U. A real time microscopy study of the growth of giant au microplates. Cryst. Growth Des., 2011, 11 320–327.CrossRefGoogle Scholar
  27. [27]
    Zhang, Z.-C.; Nosheen, F.; Zhang, J.-C.; Yang, Y.; Wang, P.-P.; Zhuang, J.; Wang, X. Growth of concave polyhedral Pd nanocrystals with 32 facets through in situ facet-selective etching. ChemSusChem, 2013, 6 1893–1897.CrossRefGoogle Scholar
  28. [28]
    Levinstein, H. J.; Robinson, W. H. Etch pits at dislocations in silver single crystals. J. Appl. Phys., 1962, 33 3149–3152.CrossRefGoogle Scholar
  29. [29]
    Radha, B.; Kiruthika, S.; Kulkarni, G. U. Metal anion–alkyl ammonium complexes as direct write precursors to produce nanopatterns of metals, nitrides, oxides, sulfides, and alloys. J. Am. Chem. Soc., 2011, 133 12706–12713.CrossRefGoogle Scholar
  30. [30]
    Gilroy, K. D.; Farzinpour, P.; Sundar, A.; Tan, T.; Hughes, R. A.; Neretina, S. Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Res., 2013, 6 418–428.CrossRefGoogle Scholar
  31. [31]
    Pileni, M. P. Supra-and nanocrystallinities: A new scientific adventure. J. Phys.: Condens. Matter, 2011, 23 503102.Google Scholar
  32. [32]
    Personick, M. L.; Langille, M. R.; Zhang, J.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J. Am. Chem. Soc., 2011, 133 6170–6173.CrossRefGoogle Scholar
  33. [33]
    Zhang, J. A.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc., 2010, 132 14012–14014.CrossRefGoogle Scholar
  34. [34]
    Tsao, Y. H.; Yang, S. X.; Evans, D. F.; Wennerstroem, H. Interactions between hydrophobic surfaces. Dependence on temperature and alkyl chain length. Langmuir, 1991, 7 3154–3159.Google Scholar
  35. [35]
    Mettela, G.; Boya, R.; Singh, D.; Kumar, G. V. P.; Kulkarni, G. U. Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: Synthesis and optical properties. Sci. Rep., 2013, 3 1793.Google Scholar
  36. [36]
    Mettela, G.; Bhogra, M.; Waghmare, U. V.; Kulkarni, G. U. Ambient stable tetragonal and orthorhombic phases in pentatwinned bipyramidal Au microcrystals. J. Am. Chem. Soc., 2015, 137 3024–3030.CrossRefGoogle Scholar
  37. [37]
    Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett., 2011, 11 3394–3398.CrossRefGoogle Scholar
  38. [38]
    Mettela, G.; Siddhanta, S.; Narayana, C.; Kulkarni, G. U. Nanocrystalline Ag microflowers as a versatile SERS platform. Nanoscale, 2014, 6 7480–7488.CrossRefGoogle Scholar
  39. [39]
    Zhang, Z. Y.; Chen, Z. P.; Pan, D. W.; Chen, L. X. Fentonlike reaction-mediated etching of gold nanorods for visual detection of Co2+. Langmuir, 2015, 31 643–650.CrossRefGoogle Scholar
  40. [40]
    Luthra, S. S.; Yang, X. J.; dos Santos, L. M. F.; White, L. S.; Livingston, A. G. Phase-transfer catalyst separation and re-use by solvent resistant nanofiltration membranes. Chem. Commun. 2001, 1468–1469.Google Scholar
  41. [41]
    Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett., 2010, 10 1369–1373.CrossRefGoogle Scholar
  42. [42]
    Brolo, A. G.; Irish, D. E.; Szymanski, G.; Lipkowski, J. Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode. Langmuir, 1998, 14 517–527.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Thematic Unit of Excellence on Nanochemistry and Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)BangaloreIndia

Personalised recommendations