Advertisement

Nano Research

, Volume 8, Issue 9, pp 2913–2924 | Cite as

Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)

  • Botao Qiao
  • Jin-Xia Liang
  • Aiqin Wang
  • Cong-Qiao Xu
  • Jun Li
  • Tao Zhang
  • Jingyue Jimmy Liu
Research Article

Abstract

Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes. While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures. This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature. Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Au1/FeOx) are much more sinteringresistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range. Theoretical studies revealed that the positively charged and surface-anchored Au1 atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance. This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability.

Keywords

single-atom catalysis gold catalyst CO oxidation covalent metal-support interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_796_MOESM1_ESM.pdf (9.5 mb)
Supplementary material, approximately 9.52 MB.

References

  1. [1]
    Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.CrossRefGoogle Scholar
  2. [2]
    Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.CrossRefGoogle Scholar
  3. [3]
    Judai, K.; Abbet, S.; Worz, A. S.; Heiz, U.; Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 2004, 126, 2732–2737.CrossRefGoogle Scholar
  4. [4]
    Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335.CrossRefGoogle Scholar
  5. [5]
    Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer- Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.CrossRefGoogle Scholar
  6. [6]
    Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.CrossRefGoogle Scholar
  7. [7]
    Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.CrossRefGoogle Scholar
  8. [8]
    Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.CrossRefGoogle Scholar
  9. [9]
    Yang, X.-F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.CrossRefGoogle Scholar
  10. [10]
    Ouyang, R. H.; Liu, J.-X.; Li, W.-X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2012, 135, 1760–1771.CrossRefGoogle Scholar
  11. [11]
    Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.CrossRefGoogle Scholar
  12. [12]
    Li, W. Z.; Kovarik, L.; Mei, D. H.; Liu, J.; Wang, Y.; Peden, C. H. F. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 2013, 4, 2481.Google Scholar
  13. [13]
    Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  14. [14]
    Hughes, M. D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132–1135.CrossRefGoogle Scholar
  15. [15]
    Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.CrossRefGoogle Scholar
  16. [16]
    Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.CrossRefGoogle Scholar
  17. [17]
    Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.CrossRefGoogle Scholar
  18. [18]
    Haruta, M. Spiers memorial Lecture Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011, 152, 11–32.CrossRefGoogle Scholar
  19. [19]
    Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Gold-catalyzed direct arylation. Science 2012, 337, 1644–1648.CrossRefGoogle Scholar
  20. [20]
    Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.Google Scholar
  21. [21]
    Corti, C. W.; Holliday, R. J.; Thompson, D. T. Progress towards the commercial application of gold catalysts. Top. Catal. 2007, 44, 331–343.CrossRefGoogle Scholar
  22. [22]
    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  23. [23]
    Wei, H. S.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; Yang, X.; Huang, Y.; Miao, S.; Liu, J.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.CrossRefGoogle Scholar
  24. [24]
    Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.CrossRefGoogle Scholar
  25. [25]
    Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.CrossRefGoogle Scholar
  26. [26]
    Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.CrossRefGoogle Scholar
  27. [27]
    Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 57, 4198–4203.CrossRefGoogle Scholar
  28. [28]
    Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.CrossRefGoogle Scholar
  29. [29]
    Flytzani-Stephanopoulos, M.; Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545–574.CrossRefGoogle Scholar
  30. [30]
    Ghosh, T. K.; Nair, N. N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and co oxidation: Mechanism efects of hydration oxdation state ad cluster size. ChemCatChem 2013, 5, 1811–1821.CrossRefGoogle Scholar
  31. [31]
    Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.CrossRefGoogle Scholar
  32. [32]
    Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1–9.Google Scholar
  33. [33]
    Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au–(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.CrossRefGoogle Scholar
  34. [34]
    Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.CrossRefGoogle Scholar
  35. [35]
    Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.CrossRefGoogle Scholar
  36. [36]
    Kistler, J. D.; Chotigkrai, N.; Xu, P. H.; Enderle, B.; Praserthdam, P.; Chen, C.-Y.; Browning, N. D.; Gates, B. C. A single-site platinum CO oxidation catalyst in Zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem., Int. Ed. 2014, 53, 8904–8907.CrossRefGoogle Scholar
  37. [37]
    Liang, J.-X.; Lin, J.; Yang, X.-F.; Wang, A.-Q.; Qiao, B.-T.; Liu, J.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.CrossRefGoogle Scholar
  38. [38]
    Li, Z.-Y.; Yuan, Z.; Li, X.-N.; Zhao, Y.-X.; He, S.-G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 2014, 136, 14307–14313.CrossRefGoogle Scholar
  39. [39]
    Liu, Y.; Jia, C.-J.; Yamasaki, J.; Terasaki, O.; Schüth, F. Highly active iron oxide supported gold catalysts for CO oxidation: How small must the gold nanoparticles be? Angew. Chem., Int. Ed. 2010, 49, 5771–5775.CrossRefGoogle Scholar
  40. [40]
    Comotti, M.; Li, W.-C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.CrossRefGoogle Scholar
  41. [41]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  42. [42]
    Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 2005, 17, 2320–2323.CrossRefGoogle Scholar
  43. [43]
    Sandratskii, L. M.; Uhl, M.; Kübler, J. Band theory for electronic and magnetic properties of a-Fe2O3. J. Phys. Condens. Matter 1996, 8, 983.CrossRefGoogle Scholar
  44. [44]
    Wang, X. G.; Weiss, W.; Shaikhutdinov, S. K.; Ritter, M.; Petersen, M.; Wagner, F.; Schlögl, R.; Scheffler, M. The hematite (α-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett. 1998, 81, 1038–1041CrossRefGoogle Scholar
  45. [45]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  46. [46]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  47. [47]
    Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA+U SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 1998, 166, 429–443.CrossRefGoogle Scholar
  48. [48]
    Henkelman, G.; Jonsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.CrossRefGoogle Scholar
  49. [49]
    Freund, H. J.; Meijer, G.; Scheffler, M.; Schlogl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.CrossRefGoogle Scholar
  50. [50]
    Shelef, M.; McCabe, R. W. Twenty-five years after introduction of automotive catalysts: What next? Catal. Today 2000, 62, 35–50.CrossRefGoogle Scholar
  51. [51]
    Xie, X. W.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.CrossRefGoogle Scholar
  52. [52]
    Fu, Q.; Li, W.-X.; Yao, Y. X.; Liu, H. Y.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interfaceconfined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.CrossRefGoogle Scholar
  53. [53]
    Fang, H.-C.; Li, Z. H.; Fan, K.-N. CO oxidation catalyzed by a single gold atom: Benchmark calculations and the performance of DFT methods. Phys. Chem. Chem. Phys. 2011, 13, 13358–13369.CrossRefGoogle Scholar
  54. [54]
    Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357.CrossRefGoogle Scholar
  55. [55]
    Deng, W. L.; Carpenter, C.; Yi, N.; Flytzani Stephanopoulos, M. Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top. Catal. 2007, 44, 199–208.CrossRefGoogle Scholar
  56. [56]
    Landman, U.; Yoon, B.; Zhang, C.; Heiz, U.; Arenz, M. Factors in gold nanocatalysis: Oxidation of CO in the nonscalable size regime. Top. Catal. 2007, 44, 145–158.CrossRefGoogle Scholar
  57. [57]
    Zhao, K. F.; Qiao, B. T.; Wang, J. H.; Zhang, Y. J.; Zhang, T. A highly active and sintering-resistant Au/FeOx-hydroxyapatite catalyst for CO oxidation. Chem. Commun. 2011, 47, 1779–781.CrossRefGoogle Scholar
  58. [58]
    Wang, Y. G.; Yoon, Y.; Glezakou, V. A.; Li, J.; Rousseau, R. The role of reducible oxide/metal cluster charge transfer: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.CrossRefGoogle Scholar
  59. [59]
    Novotný, Z.; Argentero, G.; Wang, Z. M.; Schmid, M.; Diebold, U.; Parkinson, G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 216103.CrossRefGoogle Scholar
  60. [60]
    Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212, 17–60.CrossRefGoogle Scholar
  61. [61]
    Wang, Y.-G.; Mei, D. H.; Li, J.; Rousseau, R. DFT+U study on the localized electronic states and their potential role during H2O dissociation and CO oxidation processes on CeO2(111) Surface. J. Phys. Chem. C 2013, 117, 23082–23089.CrossRefGoogle Scholar
  62. [62]
    Yuan, Z.; Li, X.-N.; He, S.-G. CO oxidation promoted by gold atoms loosely attached in AuFe3 cluster anions. J. Phsy. Chem. Lett. 2014, 5, 1585–1590.CrossRefGoogle Scholar
  63. [63]
    Song, W. Y.; Hensen, E. J. M. Mechanistic aspects of the water–gas shift reaction on isolated and clustered Au atoms on CeO2(110): A density functional theory study. ACS Catal. 2014, 4, 1885–1892.CrossRefGoogle Scholar
  64. [64]
    Liu, Z.-P.; Jenkins, S. J.; King, D. A. Origin and activity of oxidized gold in water-gas-shift catalysis. Phys. Rev. Lett. 2005, 94, 196102.CrossRefGoogle Scholar
  65. [65]
    Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.CrossRefGoogle Scholar
  66. [66]
    Li, L.; Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.; Wang, X. D.; Zhang, T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism. J. Catal. 2013, 299, 90–100.CrossRefGoogle Scholar
  67. [67]
    Glendening, E. D.; Weinhold, F. Natural resonance theory: I. General formalism. J. Comput. Chem. 1998, 19, 593–609.CrossRefGoogle Scholar
  68. [68]
    Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem.—Eur. J. 2009, 15, 186–197.CrossRefGoogle Scholar
  69. [69]
    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.Google Scholar
  70. [70]
    Böhme, D. K.; Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew. Chem., Int. Ed. 2005, 44, 2336–2354.CrossRefGoogle Scholar
  71. [71]
    Thomas, J. M.; Saghi, Z.; Gai, P. L. Can a single atom serve as the active site in some heterogeneous catalysts? Top. Catal. 2011, 54, 588–594.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsArizona State UniversityTempeUSA
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationTsinghua UniversityBeijingChina
  4. 4.Guizhou Provincial Key Laboratory of Computational Nano-Material ScienceGuizhou Normal CollegeGuiyangChina

Personalised recommendations