Nano Research

, Volume 8, Issue 9, pp 2891–2900 | Cite as

Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting

  • Yichong Liu
  • Yousong Gu
  • Xiaoqin Yan
  • Zhuo Kang
  • Shengnan Lu
  • Yihui Sun
  • Yue ZhangEmail author
Research Article


We developed and demonstrated a ZnO/ZnS/Au composite photoanode with significantly enhanced photoelectrochemical water-splitting performance, containing a ZnS interlayer and Au nanoparticles. The solar-to-hydrogen conversion efficiency of this ZnO/ZnS/Au heterostructure reached 0.21%, 3.5 times that of pristine ZnO. The comparison of the incident photon-to-current efficiency (IPCE) and the photoresponse in the white and visible light regions further verified that the enhancement resulted from contributions of both UV and visible light. The modification of the Au NPs was shown to improve the photoelectrochemical (PEC) performance to both UV and visible light, as modification encouraged effective surface passivation and surface-plasmonresonance effects. The ZnS interlayer favored the movement of photogenerated electrons under UV light and hot electrons under visible light, causing their injection into ZnO; this simultaneously suppressed the electron-hole recombination at the photoanode-electrolyte interface. The optimized design of the interlayer within plasmonic metal/semiconductor composite systems, as reported here, provided a facile and compatible photoelectrode configuration, enhancing the utilization efficiency of incident light for photoelectrochemical applications.


ZnO ZnS Au photoanode photoelectrochemical water splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_794_MOESM1_ESM.pdf (681 kb)
Supplementary material, approximately 679 KB.


  1. [1]
    Liu, J.; Zhang, H. C.; Tang, D.; Zhang, X.; Yan, L. K.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light. Chemcatchem 2014, 6, 2634–2641.CrossRefGoogle Scholar
  2. [2]
    Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot–intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.CrossRefGoogle Scholar
  3. [3]
    Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.CrossRefGoogle Scholar
  4. [4]
    Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. p–n heterojunction photoelectrodes composed of Cu2O–loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220.CrossRefGoogle Scholar
  5. [5]
    Wheeler, D. A.; Wang, G. M.; Ling, Y. C.; Li, Y.; Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702.CrossRefGoogle Scholar
  6. [6]
    Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.CrossRefGoogle Scholar
  7. [7]
    Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407–413.CrossRefGoogle Scholar
  8. [8]
    Hou, J. G.; Yang, C.; Cheng, H. J.; Jiao, S. Q.; Takeda, O.; Zhu, H. M. High–performance p–Cu2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758–3768.CrossRefGoogle Scholar
  9. [9]
    Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self–powered biosensing application. Biosens. Bioelectron. 2015, 64, 499–504.CrossRefGoogle Scholar
  10. [10]
    Bai, Z. M.; Yan, X. Q.; Kang, Z.; Hu, Y. P.; Zhang, X. H.; Zhang, Y. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 2014, 14, 392–400.CrossRefGoogle Scholar
  11. [11]
    Kang, Z.; Yan, X. Q.; Wang, Y. F.; Bai, Z. M.; Liu, Y. C.; Zhang, Z.; Lin, P.; Zhang, X. H.; Yuan, H. G.; Zhang, X. J. et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all–oxide p–n heterostructure for enhanced photoelectrochemical property and self–powered biosensing application. Sci. Rep. 2015, 5, 7882.CrossRefGoogle Scholar
  12. [12]
    Zhang, X.; Wang, F.; Huang, H.; Li, H. T.; Han, X.; Liu, Y.; Kang, Z. H. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 2013, 5, 2274–2278.CrossRefGoogle Scholar
  13. [13]
    Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.CrossRefGoogle Scholar
  14. [14]
    Kaidashev, E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c–plane sapphire grown by multistep pulsed–laser deposition. Appl. Phys. Lett. 2003, 82, 3901–3903.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  16. [16]
    Dai, Y.; Zhang, Y; Bai, Y. Q.; Wang, Z. L. Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 2003, 375, 96–101.CrossRefGoogle Scholar
  17. [17]
    Dai, Y.; Zhang, Y.; Wang, Z. L.; The octa–twin tetraleg ZnO nanostructures. Solid State Commun. 2003, 126, 629–633.CrossRefGoogle Scholar
  18. [18]
    Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au–based Schottky junction for enhanced photoresponse of a flexible self–powered UV detector. ACS Appl. Mater. Interfaces. 2014, 6, 14116–14122.CrossRefGoogle Scholar
  19. [19]
    Pu, Y. C.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Au nanostructure–decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.CrossRefGoogle Scholar
  20. [20]
    Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.CrossRefGoogle Scholar
  21. [21]
    Azevedo, J.; Steier, L.; Dias, P.; Stefik, M.; Sousa, C. T.; Araujo, J. P.; Mendes, A.; Graetzel, M.; Tilley, S. D. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci. 2014, 7, 4044–4052.CrossRefGoogle Scholar
  22. [22]
    Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow–photon–effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409–1419.CrossRefGoogle Scholar
  23. [23]
    Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.CrossRefGoogle Scholar
  24. [24]
    Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Hou, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X–ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362–7372.CrossRefGoogle Scholar
  25. [25]
    Wu, M.; Chen, W. J.; Shen, Y. H.; Huang, F. Z.; Li, C. H.; Li, S. K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15052–15060.Google Scholar
  26. [26]
    Zhang, X., Y.; Liu, Y.; Kang, Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high–performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.CrossRefGoogle Scholar
  27. [27]
    Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic–metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.CrossRefGoogle Scholar
  28. [28]
    Hou, W.; Cronin, S. B. A review of surface plasmon resonance–enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.CrossRefGoogle Scholar
  29. [29]
    Guo, P. H.; Jiang, J. G.; Shen, S. H.; Guo, L. J. ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance. Inter. J. Hydrogen Energ. 2013, 38, 13097–13103.CrossRefGoogle Scholar
  30. [30]
    Jiang, J. G.; Wang, M.; Ma, L. J.; Chen, Q. Y.; Guo, L. J. Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion–exchange approach and photoelectrochemical performances. Inter. J. Hydrogen Energ. 2013, 38, 13077–13083.CrossRefGoogle Scholar
  31. [31]
    Kushwaha, A.; Aslam, M. ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochimica Acta 2014, 130, 222–231.CrossRefGoogle Scholar
  32. [32]
    Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods–based self–powered photodetector by piezotronic interface engineering. Nano Energ. 2014, 9, 237–244.CrossRefGoogle Scholar
  33. [33]
    Chen, X.; Bai, Z. M.; Yan, X. Q.; Yuan, H. G.; Zhang, G. J.; Lin, P.; Zhang, Z.; Liu, Y. C.; Zhang, Y. Design of efficient dye–sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes. Nanoscale 2014, 6, 4691–4697.CrossRefGoogle Scholar
  34. [34]
    Mallick, K.; Wang, Z. L.; Pal, T. Seed–mediated successive growth of gold particles accomplished by UV irradiation: A photochemical approach for size–controlled synthesis. J. Photoch. Photobio. A 2001, 140, 75–80.CrossRefGoogle Scholar
  35. [35]
    Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen–modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.CrossRefGoogle Scholar
  36. [36]
    Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129–4133.CrossRefGoogle Scholar
  37. [37]
    Schrier, J.; Demchenko, D. O.; Wang, L. W. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007, 7, 2377–2282.CrossRefGoogle Scholar
  38. [38]
    Liu, L. Z.; Chen, Y. Q.; Guo, T. B.; Zhu, Y. Q.; Su, Y.; Jia, C.; Wei, M. Q.; Cheng, Y. F. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: Morphology evolution and its effect on dye–sensitized solar cell. ACS Appl. Mater. Interfaces 2012, 4, 17–23.CrossRefGoogle Scholar
  39. [39]
    Liu, W.; Wang, R. M.; Wang, N. From ZnS nanobelts to ZnO/ZnS heterostructures: Microscopy analysis and their tunable optical property. Appl. Phys. Lett. 2010, 97, 041916.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yichong Liu
    • 1
  • Yousong Gu
    • 1
  • Xiaoqin Yan
    • 1
  • Zhuo Kang
    • 1
  • Shengnan Lu
    • 1
  • Yihui Sun
    • 1
  • Yue Zhang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations