Nano Research

, Volume 8, Issue 9, pp 2871–2880 | Cite as

Ag nanoparticle/polymer composite barcode nanorods

  • Hongxu Chen
  • Tieqiang Wang
  • Huaizhong Shen
  • Wendong Liu
  • Shuli Wang
  • Kun Liu
  • Junhu Zhang
  • Bai Yang
Research Article

Abstract

We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.

Keywords

colloidal lithography nanoparticle/polymer composites nanorod barcode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_792_MOESM1_ESM.pdf (2.4 mb)
Supplementary material, approximately 2.41 MB.

References

  1. [1]
    Huang, X. N.; Huang, G.; Zhang, S. R.; Sagiyama, K.; Togao, O.; Ma, X. P.; Wang, Y. G.; Li, Y.; Soesbe, T. C.; Sumer, B. D. et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem., Int. Ed., 2013, 52 8074–8078.CrossRefGoogle Scholar
  2. [2]
    Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem., Int. Ed., 2006, 45 6104–6017.CrossRefGoogle Scholar
  3. [3]
    Finkel, N. H.; Lou, X. H.; Wang, C. Y.; He, L. Barcoding the microworld. Anal. Chem., 2004, 76 352A–359A.Google Scholar
  4. [4]
    Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantumdot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19 631–635.CrossRefGoogle Scholar
  5. [5]
    Pregibon, D. C.; Toner, M.; Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science, 2007, 315 1393–1396.CrossRefGoogle Scholar
  6. [6]
    Gershon, D. Microarray technology: An array of opportunities. Nature, 2002, 416 885–891.CrossRefGoogle Scholar
  7. [7]
    Nicewarner-Peña, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Peña, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes. Science, 2001, 294 137–141.CrossRefGoogle Scholar
  8. [8]
    Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol., 2009, 1 345–362.CrossRefGoogle Scholar
  9. [9]
    Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 2008, 37 885–897.CrossRefGoogle Scholar
  10. [10]
    Zhang, Y.; Wang, H.; Nie, J. F.; Zhou, H.; Shen, G. L.; Yu, R. Q. Mussel-inspired fabrication of encoded polymer films for electrochemical identification. Electrochem. Commun., 2009, 11 1936–1939.CrossRefGoogle Scholar
  11. [11]
    Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J. Am. Chem. Soc., 2006, 128 16892–16903.CrossRefGoogle Scholar
  12. [12]
    Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett., 2007, 7 3849–3853.CrossRefGoogle Scholar
  13. [13]
    Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science, 2003, 301 1884–1886.CrossRefGoogle Scholar
  14. [14]
    Tok, J. B.-H.; Chuang, F. Y. S.; Kao, M. C.; Rose, K. A.; Pannu, S. S.; Sha, M. Y.; Chakarova, G.; Penn, S. G.; Dougherty, G. M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem., Int. Ed., 2006, 45 6900–6904.CrossRefGoogle Scholar
  15. [15]
    Eastman, P. S.; Ruan, W. M.; Doctolero, M.; Nuttall, R.; de Feo, G.; Park, J. S.; Chu, J. S. F.; Cooke, P.; Gray, J. W.; Li, S. et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett., 2006, 6 1059–1064.Google Scholar
  16. [16]
    Wang, J. Barcoded metal nanowires. J. Mater. Chem., 2008, 18 4017–4020.CrossRefGoogle Scholar
  17. [17]
    Zhao, Y. J.; Shum, H. C.; Chen, H. S.; Adams, L. L. A.; Gu, Z. Z.; Weitz, D. A. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc., 2011, 133 8790–8793.CrossRefGoogle Scholar
  18. [18]
    Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc., 2008, 130 2940–2941.CrossRefGoogle Scholar
  19. [19]
    Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater., 2009, 21 4020–4024.CrossRefGoogle Scholar
  20. [20]
    Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc., 2000, 122 2138–2139.CrossRefGoogle Scholar
  21. [21]
    Kuang, M.; Wang, D. Y.; Bao, H. B.; Gao, M. Y.; Mö hwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater., 2005, 17 267–270.CrossRefGoogle Scholar
  22. [22]
    Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L.; Yost, K.; Yuen, P. K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA, 2003, 100 389–393.CrossRefGoogle Scholar
  23. [23]
    Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hardtemplate synthetic methods. Angew. Chem., Int. Ed., 2006, 45 2672–2692.CrossRefGoogle Scholar
  24. [24]
    Sattayasamitsathit, S.; Burdick, J.; Bash, R.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Alloy nanowires barcodes based on nondestructive X-ray fluorescence readout. Anal. Chem., 2007, 79 7571–7575.CrossRefGoogle Scholar
  25. [25]
    Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18 533–550.CrossRefGoogle Scholar
  26. [26]
    Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano, 2010, 4 4350–4360.CrossRefGoogle Scholar
  27. [27]
    Zhao, Y. J.; Cheng, Y.; Shang, L. R.; Wang, J.; Xie, Z. Y.; Gu, Z. Z. Microfluidic synthesis of barcode particles for multiplex assays. Small, 2015, 11 151–174.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc., 2014, 136 4893–4896.CrossRefGoogle Scholar
  29. [29]
    Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.CrossRefGoogle Scholar
  30. [30]
    Service, R. F. Solar energy. Can the upstarts top silicon? Science, 2008, 319 718–720.Google Scholar
  31. [31]
    Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater., 2010, 22 4249–4269.CrossRefGoogle Scholar
  32. [32]
    Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater., 2010, 20 3411–3424.CrossRefGoogle Scholar
  33. [33]
    Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J. Polym. Sci., Part B: Polym. Phys., 2007, 45 1283–1290.CrossRefGoogle Scholar
  34. [34]
    Chen, M. J.; Zhao, Y. N.; Yang, W. T.; Yin, M. Z. UVirradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir, 2013, 29 16018–16024.CrossRefGoogle Scholar
  35. [35]
    Cocca, M.; D’ Orazio, L. Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. J. Polym. Sci., Part B: Polym. Phys., 2008, 46 344–350.CrossRefGoogle Scholar
  36. [36]
    Gupta, S.; Uhlmann, P.; Agrawal, M.; Chapuis, S.; Oertel, U.; Stamm, M. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules, 2008, 41 2874–2879.CrossRefGoogle Scholar
  37. [37]
    Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B, 1999, 103 9533–9539.CrossRefGoogle Scholar
  38. [38]
    Deshmukh, R. D.; Composto, R. J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater., 2007, 19 745–754.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hongxu Chen
    • 1
  • Tieqiang Wang
    • 2
  • Huaizhong Shen
    • 1
  • Wendong Liu
    • 1
  • Shuli Wang
    • 1
  • Kun Liu
    • 1
  • Junhu Zhang
    • 1
  • Bai Yang
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina

Personalised recommendations