Nano Research

, Volume 8, Issue 9, pp 2850–2858 | Cite as

Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability

  • Xing Zhong
  • Gongming Wang
  • Benjamin Papandrea
  • Mufan Li
  • Yuxi Xu
  • Yu Chen
  • Chih-Yen Chen
  • Hailong Zhou
  • Teng Xue
  • Yongjia Li
  • Dehui Li
  • Yu Huang
  • Xiangfeng Duan
Research Article


Silicon nanowires (SiNWs) have been widely studied as light harvesting antennas in photocatalysts due to their ability to absorb broad-spectrum solar radiation, but they are typically limited by poor photoelectrochemical stability. Here, we report the synthesis of reduced graphene oxide-SiNW (rGO-SiNW) heterostructures to achieve greatly improved photocatalytic activity and stability. The SiNWs were synthesized through a metal-assisted electroless etching process and functionalized with reduced graphene oxide (rGO) flakes through a chemical absorption process. Here, the rGO not only functions as a physical protection layer to isolate the SiNWs from the harsh electrochemical environment but also serves as a charge mediator to facilitate the charge separation and transport processes. Furthermore, the rGO may also function as a redox catalyst to ensure efficient utilization of photo-carriers for the desired chemical reactions. Photocatalytic dye degradation studies show that the photoactivity of the heterostructures can be significantly enhanced with an initial activation process and maintained without apparent decay over repeated reaction cycles. Electrochemical and photoelectrochemical studies indicate that the enhanced photoactivity and photostability can be attributed to the more efficient separation of photoexcited charge carriers in SiNWs and the reduced self-oxidation of the surface of the SiNWs during the photocatalytic dye degradation process. The ability to significantly improve the photocatalytic activity and stability in rGO-SiNW heterostructures can not only lead to more opportunities for the application of silicon-based photocatalysts/photoelectrodes for solar energy harvesting but also provide new insights into the stabilization of other unstable photocatalytic systems.


graphene silicon nanowire photocatalyst photoactivity stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_790_MOESM1_ESM.pdf (771 kb)
Supplementary material, approximately 769 KB.


  1. [1]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRefGoogle Scholar
  2. [2]
    Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.CrossRefGoogle Scholar
  3. [3]
    Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216.CrossRefGoogle Scholar
  4. [4]
    Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y.; Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539–4543.CrossRefGoogle Scholar
  5. [5]
    Huang, R. G.; Tham, D.; Wang, D. W.; Heath, J. R. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 2011, 4, 1005–1012.CrossRefGoogle Scholar
  6. [6]
    Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.CrossRefGoogle Scholar
  7. [7]
    Tang, J. Y.; Wang, H. T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279–4283.CrossRefGoogle Scholar
  8. [8]
    Jeong, S.; Garnett, E. C.; Wang, S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; McGehee, M. D.; Cui, Y. Hybrid silicon nanocone-polymer solar cells. Nano Lett. 2012, 12, 2971–2976.CrossRefGoogle Scholar
  9. [9]
    Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells.. Nano Lett. 2010, 10, 1082–1087.CrossRefGoogle Scholar
  10. [10]
    Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.CrossRefGoogle Scholar
  11. [11]
    Thiyagu, S.; Devi, B. P.; Pei, Z. W. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143.CrossRefGoogle Scholar
  12. [12]
    Gunawardena, J. Silicon dreams of cells into symbols. Nat. Biotechnol. 2012, 30, 838–840.CrossRefGoogle Scholar
  13. [13]
    Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen- Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882–1887.CrossRefGoogle Scholar
  14. [14]
    Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Lu, X. H.; Li, Y. Chemically modified nanostructures for photoelectrochemical water splitting. J. Photochem. Photobiol. C 2014, 19, 35–51.CrossRefGoogle Scholar
  15. [15]
    Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682–6691.CrossRefGoogle Scholar
  16. [16]
    Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743.CrossRefGoogle Scholar
  17. [17]
    Qu, Y. Q.; Zhong, X.; Li, Y. J.; Liao, L.; Huang, Y.; Duan, X. F. Photocatalytic properties of porous silicon nanowires. J. Mater. Chem. 2010, 20, 3590–3594.CrossRefGoogle Scholar
  18. [18]
    Qu, Y. Q.; Xue, T.; Zhong, X.; Lin, Y. C.; Liao, L.; Choi, J. N.; Duan, X. F. Heterointegration of Pt/Si/Ag nanowire photodiodes and their photocatalytic properties. Adv. Funct. Mater. 2010, 20, 3005–3011.CrossRefGoogle Scholar
  19. [19]
    Qu, Y. Q.; Cheng, R.; Su, Q.; Duan, X. F. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. J. Am. Chem. Soc. 2011, 133, 16730–16733.CrossRefGoogle Scholar
  20. [20]
    Zhong, X.; Qu, Y. Q.; Lin, Y. C.; Liao, L.; Duan, X. F. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 2011, 3, 261–270.CrossRefGoogle Scholar
  21. [21]
    Qu, Y. Q.; Zhou, H. L.; Duan, X. F. Porous silicon nanowires. Nanoscale 2011, 3, 4060–4068.CrossRefGoogle Scholar
  22. [22]
    Qu, Y. Q.; Duan, X. F. One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. J. Mater. Chem. 2012, 22, 16171–16181.CrossRefGoogle Scholar
  23. [23]
    Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.CrossRefGoogle Scholar
  24. [24]
    Chen, Y. W.; Prange, J. D.; Dü hnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539–544.CrossRefGoogle Scholar
  25. [25]
    Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.CrossRefGoogle Scholar
  26. [26]
    Qu, Y. Q.; Liao, L.; Cheng, R.; Wang, Y.; Lin, Y. C.; Huang, Y.; Duan, X. F. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. Nano Lett. 2010, 10, 1941–1949.CrossRefGoogle Scholar
  27. [27]
    Wang, P.; Han, L.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 2011, 4, 1153–1162.CrossRefGoogle Scholar
  28. [28]
    Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2012, 5, 190–194.CrossRefGoogle Scholar
  29. [29]
    Bai, J. W.; Cheng, R.; Xiu, F. X.; Liao, L.; Wang, M. S.; Shailos, A.; Wang, K. L.; Huang, Y.; Duan, X. F. Very large magnetoresistance in graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 655–659.CrossRefGoogle Scholar
  30. [30]
    Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. Highspeed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.CrossRefGoogle Scholar
  31. [31]
    Liao, L.; Bai, J. W.; Cheng, R.; Lin, Y. C.; Jiang, S.; Huang, Y.; Duan, X. F. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 2010, 10, 1917–1921.CrossRefGoogle Scholar
  32. [32]
    Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.CrossRefGoogle Scholar
  33. [33]
    Wang, G. M.; Qian, F.; Saltikov, C. W.; Jiao, Y. Q.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011, 4, 563–570.CrossRefGoogle Scholar
  34. [34]
    Wang, B.; Liddell, K. L.; Wang, J. J.; Koger, B.; Keating, C. D.; Zhu, J. Oxide-on-graphene field effect bio-ready sensors. Nano Res. 2014, 7, 1263–1270.CrossRefGoogle Scholar
  35. [35]
    Li, X. Y.; Li, J.; Zhou, X. M.; Ma, Y. Y.; Zheng, Z. P.; Duan, X. F.; Qu, Y. Q. Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. Carbon 2014, 66, 713–719.CrossRefGoogle Scholar
  36. [36]
    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.CrossRefGoogle Scholar
  37. [37]
    Xiang, Q. J.; Yu, J. G. Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2013, 4, 753–759.CrossRefGoogle Scholar
  38. [38]
    Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796.CrossRefGoogle Scholar
  39. [39]
    Wu, H. Y.; Xu, M.; Da, P. M.; Li, W. J.; Jia, D. S.; Zheng, G. F. WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys. Chem. Chem. Phys. 2013, 15, 16138–16142.CrossRefGoogle Scholar
  40. [40]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Rollto- roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  41. [41]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  42. [42]
    Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129–4133.CrossRefGoogle Scholar
  43. [43]
    Debgupta, J.; Mandal, S.; Kalita, H.; Aslam, M.; Patra, A.; Pillai, V. Photophysical and photoconductivity properties of thiol-functionalized graphene-CdSe QD composites. RSC Adv. 2014, 4, 13788–13795.CrossRefGoogle Scholar
  44. [44]
    Stratakis, E.; Sawa, K.; Konios, D.; Petridis, C.; Kymakis, E. Improving the efficiency of organic photovoltaics by tuning the work-function of graphene oxide hole transporting layers. Nanoscale 2014, 6, 6925–6931.CrossRefGoogle Scholar
  45. [45]
    Yusoff, A. B.; Kim, H. P.; Jang, J. Inverted organic solar cells with TiOx cathode and graphene oxide anode buffer layers. Sol. Energy Mater. Sol. Cells 2013, 109, 63–69.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xing Zhong
    • 1
  • Gongming Wang
    • 1
  • Benjamin Papandrea
    • 1
  • Mufan Li
    • 1
  • Yuxi Xu
    • 1
  • Yu Chen
    • 2
  • Chih-Yen Chen
    • 1
  • Hailong Zhou
    • 1
  • Teng Xue
    • 2
  • Yongjia Li
    • 2
  • Dehui Li
    • 1
  • Yu Huang
    • 2
    • 3
  • Xiangfeng Duan
    • 1
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.California Nanosystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations