Nano Research

, Volume 8, Issue 9, pp 2842–2849 | Cite as

High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2

  • Santiago J. Cartamil-Bueno
  • Peter G. Steeneken
  • Frans D. Tichelaar
  • Efren Navarro-Moratalla
  • Warner J. Venstra
  • Ronald van Leeuwen
  • Eugenio Coronado
  • Herre S. J. van der Zant
  • Gary A. Steele
  • Andres Castellanos-Gomez
Research Article


Controlling the strain in two-dimensional (2D) materials is an interesting avenue to tailor the mechanical properties of nanoelectromechanical systems. Here, we demonstrate a technique to fabricate ultrathin tantalum oxide nanomechanical resonators with large stress by the laser oxidation of nano-drumhead resonators composed of tantalum diselenide (TaSe2), a layered 2D material belonging to the metal dichalcogenides. Before the study of their mechanical properties with a laser interferometer, we verified the oxidation and crystallinity of the freely suspended tantalum oxide using high-resolution electron microscopy. We demonstrate that the stress of tantalum oxide resonators increases by 140 MPa (with respect to pristine TaSe2 resonators), which causes an enhancement in the quality factor (14 times larger) and resonance frequency (9 times larger) of these resonators.


TaSe2 tantalum oxide mechanical resonators laser oxidation optical interferometer high quality factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_789_MOESM1_ESM.pdf (3.5 mb)
Supplementary material, approximately 3562 KB.


  1. [1]
    Adiga, V.P.; Ilic, B.; Barton, R.A.; Wilson- Rae, I.; Craighead, H.G.; Parpia, J.M. Modal dependence of dissipation in silicon nitride drum resonators. Appl. Phys. Lett 2011, 99, 253103.CrossRefGoogle Scholar
  2. [2]
    Wilson-Rae, I.; Barton, R.A.; Verbridge, S.S.; Southworth, D.R.; Ilic, B.; Craighead, H.G.; Parpia, J.M. High-Q nanomechanics via destructive interference of elastic waves. Phys. Rev. Lett 2011, 106, 047205.CrossRefGoogle Scholar
  3. [3]
    Singh, V.; Sengupta, S.; Solanki, H.S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M.M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 2010, 21, 165204.CrossRefGoogle Scholar
  4. [4]
    Koenig, S.P.; Wang, L.D.; Pellegrino, J.; Bunch, J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol 2012, 7, 728–732.CrossRefGoogle Scholar
  5. [5]
    Pérez Garza, H.H.; Kievit, E.W.; Schneider, G.F.; Staufer, U. Controlled, reversible, and nondestructive generation of uniaxial extreme strains (<10%) in graphene. Nano Lett 2014, 14, 4107–4113.CrossRefGoogle Scholar
  6. [6]
    Zalalutdinov, M.K.; Robinson, J.T.; Junkermeier, C.E.; Culbertson, J.C.; Reinecke, T.L.; Stine, R.; Sheehan, P.E.; Houston, B.H.; Snow, E.S. Engineering graphene mechanical systems. Nano Lett 2012, 12, 4212–4218.CrossRefGoogle Scholar
  7. [7]
    Unterreithmeier, Q.P.; Faust, T.; Kotthaus, J.P. Damping of nanomechanical resonators. Phys. Rev. Lett 2010, 105, 027205.CrossRefGoogle Scholar
  8. [8]
    Castellanos-Gomez, A.; Navarro-Moratalla, E.; Mokry, G.; Quereda, J.; Pinilla-Cienfuegos, E.; Agraït, N.; van der Zant, H.S.J.; Coronado, E.; Steele, G.A.; Rubio-Bollinger, G. Fast and reliable identification of atomically thin layers of TaSe2 crystals. Nano Res 2013, 6, 191–199.CrossRefGoogle Scholar
  9. [9]
    Castellanos-Gomez, A.; van Leeuwen, R.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Venstra, W.J. Single-layer MoS2 mechanical resonators. Adv. Mater 2013, 25, 6719–6723.CrossRefGoogle Scholar
  10. [10]
    Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.CrossRefGoogle Scholar
  11. [11]
    Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 2014, 1, 011002.CrossRefGoogle Scholar
  12. [12]
    Yan, Z.; Jiang, C.; Pope, T.R.; Tsang, C.F.; Stickney, J.L.; Goli, P.; Renteria, J.; Salguero, T.T.; Balandin, A.A. Phonon and thermal properties of exfoliated TaSe2 thin films. J. Appl. Phys 2013, 114, 204301.Google Scholar
  13. [13]
    Hummel, H.-U.; Fackler, R.; Remmert, P. Tantaloxide durch gasphasenhydrolyse, druckhydrolyse und transportreaktion aus 2H-TaS2: Synthesen von TTTa2O5 und TTa2O5 und kristallstruktur von TTa2O5. Chem. Ber. 1992, 551–556.Google Scholar
  14. [14]
    Terao, N. Structure des oxides de tantale. Jpn. J. Appl. Phys 1967, 6, 21.CrossRefGoogle Scholar
  15. [15]
    Moser, R. Single-crystal growth and polymorphy of Nb2O5 and Ta2O5. Schweiz. Mineral. Petrogr. Mitt 1965, 45, 38–101.Google Scholar
  16. [16]
    Dobal, P.S.; Katiyar, R.S.; Jiang, Y.; Guo, R.; Bhalla, A.S. Raman scattering study of a phase transition in tantalum pentoxide. J. Raman Spectrosc 2000, 31, 1061–1065.CrossRefGoogle Scholar
  17. [17]
    Lavik, M.T.; Medved, T.M.; Moore, G.D. Oxidation characteristics of MoS2 and other solid lubricants. ASLE Trans 1968, 11, 44–55.CrossRefGoogle Scholar
  18. [18]
    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A.M.; Calado, V.E.; van der Zant, H.S.J.; Steele, G.A. Laserthinning of MoS5: On demand generation of a single-layer semiconductor. Nano Lett 2012, 12, 3187–3192.CrossRefGoogle Scholar
  19. [19]
    Wah, T. Vibration of circular plates. J. Acoust. Soc. Am 1962, 34, 275–281.CrossRefGoogle Scholar
  20. [20]
    Kang, J.; Tongay, S.; Zhou, J.; Li, J.B.; Wu, J.Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett 2013, 102, 012111.CrossRefGoogle Scholar
  21. [21]
    Barmatz, M. Elastic measurements in one and two-dimensional compounds. Ultrason. Symp. Proc 1974, 1–3, 461–467.Google Scholar
  22. [22]
    Barmatz, M.; Testardi, L.R.; Di Salvo, F.J. Elasticity measurements in the layered dichalcogenides TaSe2 and NbSe2. Phys. Rev. B 1975, 12, 4367.CrossRefGoogle Scholar
  23. [23]
    Chu, C.W.; Testardi, L.R.; Di Salvo, F.J.; Moncton, D.E. Pressure effects on the charge-density-wave phases in 2 H-TaSe2. Phys. Rev. B 1976, 14, 464.CrossRefGoogle Scholar
  24. [24]
    Feldman, J.L.; Vold, C.L.; Skelton, E.F.; Yu, S.C.; Spain, I.L. X-ray diffraction studies and thermal and elastic properties of 2 H-TaSe2. Phys. Rev. B 1978, 18, 5820.CrossRefGoogle Scholar
  25. [25]
    Abdullaev, N.A. Elastic properties of layered crystals. Phys. Solid State 2006, 48, 663–669.CrossRefGoogle Scholar
  26. [26]
    Dub, S.N.; Starikov, V.V. Elasticity module and hardness of niobium and tantalum anode oxide films. Funct. Mater 2007, 14, 347–350.Google Scholar
  27. [27]
    Tien, C.-L.; Lee, C.-C.; Chuang, K.-P.; Jaing, C.-C. Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry. J. Mod. Opt 2000, 47, 1681–1691.Google Scholar
  28. [28]
    Schmid, S.; Jensen, K.D.; Nielsen, K.H.; Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 2011, 84, 165307.CrossRefGoogle Scholar
  29. [29]
    Yu, P.-L.; Purdy, T.P.; Regal, C.A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett 2012, 108, 083603.CrossRefGoogle Scholar
  30. [30]
    Adiga, V.P.; Ilic, B.; Barton, R.A.; Wilson-Rae, I.; Craighead, H.G.; Parpia, J.M. Approaching intrinsic performance in ultra-thin silicon nitride drum resonators. J. Appl. Phys 2012, 112, 064323.CrossRefGoogle Scholar
  31. [31]
    Kermany, A.R.; Brawley, G.; Mishra, N.; Sheridan, E.; Bowen, W.P.; Iacopi, F. Microresonators with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon. Appl. Phys. Lett 2014, 104, 081901.CrossRefGoogle Scholar
  32. [32]
    Lee, S.; Adiga, V.P.; Barton, R.A.; van der Zande, A.M.; Lee, G.-H.; Ilic, B.R.; Gondarenko, A.; Parpia, J.M.; Craighead, H.G.; Hone, J. Graphene metallization of highstress silicon nitride resonators for electrical integration. Nano Lett 2013, 13, 4275–4279.CrossRefGoogle Scholar
  33. [33]
    Lee, J.; Wang, Z.H.; He, K.L.; Shan, J.; Feng, P.X.-L. High frequency MoS2 nanomechanical resonators. ACS Nano 2013, 7, 6086–6091.CrossRefGoogle Scholar
  34. [34]
    Coronado, E.; Forment-Aliaga, A.; Navarro-Moratalla, E.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A. Nanofabrication of TaS2 conducting layers nanopatterned with Ta2O5 insulating regions via AFM. J. Mater. Chem. C 2013, 1, 7692–7694.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Santiago J. Cartamil-Bueno
    • 1
  • Peter G. Steeneken
    • 1
  • Frans D. Tichelaar
    • 2
  • Efren Navarro-Moratalla
    • 3
  • Warner J. Venstra
    • 1
  • Ronald van Leeuwen
    • 1
  • Eugenio Coronado
    • 3
  • Herre S. J. van der Zant
    • 1
  • Gary A. Steele
    • 1
  • Andres Castellanos-Gomez
    • 1
  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  2. 2.Kavli Institute of NanoscienceDelft University of Technology, National Centre for HREMDelftThe Netherlands
  3. 3.Instituto Ciencia Molecular (ICMol)Univ. ValenciaPaternaSpain

Personalised recommendations