Nano Research

, Volume 8, Issue 9, pp 2800–2809 | Cite as

All-carbon nanotube diode and solar cell statistically formed from macroscopic network

Research Article

Abstract

Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at ∼20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

Keywords

all-carbon nanotube solar cell Schottky diode carbon nanotube diode carbon nanotube bundles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_785_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.03 MB.

References

  1. [1]
    Wei, D. C.; Liu, Y. Q. The intramolecular junctions of carbon nanotubes. Adv. Mater. 2008, 20, 2815–2841.CrossRefGoogle Scholar
  2. [2]
    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  3. [3]
    Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G. Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2012, 2, 1043–1055.CrossRefGoogle Scholar
  4. [4]
    Kymakis, E. Photovoltaic devices based on carbon nanotubes and related structures. In Carbon Nanotubes and Related Structures; Guldi, D. M.; Martin, N., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2010; pp 291–303.CrossRefGoogle Scholar
  5. [5]
    Levitsky, I. A.; Euler, W. B.; Karachevtsev, V. A. Light energy conversion at carbon nanotubes-organic and inorganic interfaces: Photovoltaics, photodetectors and bolometers. In Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials.; Springer: London, 2012; pp 1–68.CrossRefGoogle Scholar
  6. [6]
    Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.CrossRefGoogle Scholar
  7. [7]
    Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146.CrossRefGoogle Scholar
  8. [8]
    Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.CrossRefGoogle Scholar
  9. [9]
    Glamazda, A. Y.; Karachevtsev, V. A.; Euler, W. B.; Levitsky, I. A. Achieving high mid-IR bolometric responsivity for anisotropic composite materials from carbon nanotubes and polymers. Adv. Funct. Mater. 2012, 22, 2177–2186.CrossRefGoogle Scholar
  10. [10]
    Glaeske. M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Res. 2013, 6, 593–601.CrossRefGoogle Scholar
  11. [11]
    Massuyeay, F; Zhao, Y. C.; El Mel, A. A.; Yaya, A.; Geshier, F.; Gautron, E.; Lefrant, S.; Mevelec, J. Y.; Ewels, C.; Hsu, C. S. et al. Improve photoconductive properties of composite nanofibers based on aligned conjugated polymers and single-walled carbon nanotubes. Nano Res. 2013, 6, 149–158.CrossRefGoogle Scholar
  12. [12]
    Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small 2013, 8, 1225–1236.CrossRefGoogle Scholar
  13. [13]
    Jung, Y.; Li, X. K.; Rajan, N. K.; Taylor, A. D.; Reed, M. A. Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 2013, 13, 95–99.CrossRefGoogle Scholar
  14. [14]
    Wadhwa, P.; Liu, B.; McCarthy, M. A.; Wu, Z. C.; Rinzler, A. G. Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 2010, 10, 5001–5005.CrossRefGoogle Scholar
  15. [15]
    Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.CrossRefGoogle Scholar
  16. [16]
    Ramuz, M. P.; Vosgueritchian, M.; Wei, P.; Wang, C. G.; Gao, Y. L.; Wu, Y. P.; Chen, Y. S.; Bao, Z. N. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 2012, 6, 10384–10395.CrossRefGoogle Scholar
  17. [17]
    Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.CrossRefGoogle Scholar
  18. [18]
    Ong, P. L.; Euler, W. B.; Levitsky, I. A. Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 2010, 21, 105203.CrossRefGoogle Scholar
  19. [19]
    Del Gobbo, S.; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells. J. Mater. Chem. C 2013, 1, 6752–6758.CrossRefGoogle Scholar
  20. [20]
    Nasibulin, A. G.; Kaskela, A.; Mustonen, K.; Anisimov, A. S.; Ruiz, V.; Kivisto, S.; Rackauskas, S.; Timmermans, M. Y.; Pudas, M.; Aitchison, B. et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214–3221.CrossRefGoogle Scholar
  21. [21]
    Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.CrossRefGoogle Scholar
  22. [22]
    Fuhrer, M. S.; Lim, A. K. L.; Shih, L.; Varadarajan, U.; Zettl, A.; McEuen, P. L. Transport through crossed nanotubes. Physica E 2000, 6, 868–871.CrossRefGoogle Scholar
  23. [23]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.CrossRefGoogle Scholar
  24. [24]
    Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. ACS Nano 2008, 2, 2154–2159.CrossRefGoogle Scholar
  25. [25]
    Rakhshani, A. E. Heterojunction properties of electrodeposited CdTe/CdS solar cells. J. Appl. Phys. 2001, 90, 4265–4271.CrossRefGoogle Scholar
  26. [26]
    Siddons, G. P.; Merchin, D.; Back, J. H.; Jeong, J. K.; Shim, M. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 2004, 4, 927–931.CrossRefGoogle Scholar
  27. [27]
    Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantar-zadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.CrossRefGoogle Scholar
  28. [28]
    Moritsubo, S.; Murai, T.; Shimada, T.; Murakami, Y.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Exciton diffusion in air-suspended single-walled carbon nanotubes. Phys. Rev. Lett. 2010, 104, 247402.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscow RegionRussia
  2. 2.Department of Material ScienceSaint-Petersburg State Polytechnical UniversitySaint-PetersburgRussia
  3. 3.Department of Applied PhysicsAalto University School of ScienceEspooFinland
  4. 4.School of Energy StudiesSavitribai Phule Pune UniversityGaneshkhindIndia
  5. 5.Department of ChemistryUniversity of RhodeIslandUSA
  6. 6.Emitech, Inc.Fall RiverUSA

Personalised recommendations