Advertisement

Nano Research

, Volume 8, Issue 9, pp 2800–2809 | Cite as

All-carbon nanotube diode and solar cell statistically formed from macroscopic network

  • Albert G. Nasibulin
  • Adinath M. Funde
  • Ilya V. Anoshkin
  • Igor A. Levitsky
Research Article

Abstract

Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at ∼20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

Keywords

all-carbon nanotube solar cell Schottky diode carbon nanotube diode carbon nanotube bundles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_785_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.03 MB.

References

  1. [1]
    Wei, D. C.; Liu, Y. Q. The intramolecular junctions of carbon nanotubes. Adv. Mater. 2008, 20, 2815–2841.CrossRefGoogle Scholar
  2. [2]
    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  3. [3]
    Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G. Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2012, 2, 1043–1055.CrossRefGoogle Scholar
  4. [4]
    Kymakis, E. Photovoltaic devices based on carbon nanotubes and related structures. In Carbon Nanotubes and Related Structures; Guldi, D. M.; Martin, N., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2010; pp 291–303.CrossRefGoogle Scholar
  5. [5]
    Levitsky, I. A.; Euler, W. B.; Karachevtsev, V. A. Light energy conversion at carbon nanotubes-organic and inorganic interfaces: Photovoltaics, photodetectors and bolometers. In Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials.; Springer: London, 2012; pp 1–68.CrossRefGoogle Scholar
  6. [6]
    Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.CrossRefGoogle Scholar
  7. [7]
    Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146.CrossRefGoogle Scholar
  8. [8]
    Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.CrossRefGoogle Scholar
  9. [9]
    Glamazda, A. Y.; Karachevtsev, V. A.; Euler, W. B.; Levitsky, I. A. Achieving high mid-IR bolometric responsivity for anisotropic composite materials from carbon nanotubes and polymers. Adv. Funct. Mater. 2012, 22, 2177–2186.CrossRefGoogle Scholar
  10. [10]
    Glaeske. M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Res. 2013, 6, 593–601.CrossRefGoogle Scholar
  11. [11]
    Massuyeay, F; Zhao, Y. C.; El Mel, A. A.; Yaya, A.; Geshier, F.; Gautron, E.; Lefrant, S.; Mevelec, J. Y.; Ewels, C.; Hsu, C. S. et al. Improve photoconductive properties of composite nanofibers based on aligned conjugated polymers and single-walled carbon nanotubes. Nano Res. 2013, 6, 149–158.CrossRefGoogle Scholar
  12. [12]
    Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small 2013, 8, 1225–1236.CrossRefGoogle Scholar
  13. [13]
    Jung, Y.; Li, X. K.; Rajan, N. K.; Taylor, A. D.; Reed, M. A. Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 2013, 13, 95–99.CrossRefGoogle Scholar
  14. [14]
    Wadhwa, P.; Liu, B.; McCarthy, M. A.; Wu, Z. C.; Rinzler, A. G. Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 2010, 10, 5001–5005.CrossRefGoogle Scholar
  15. [15]
    Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.CrossRefGoogle Scholar
  16. [16]
    Ramuz, M. P.; Vosgueritchian, M.; Wei, P.; Wang, C. G.; Gao, Y. L.; Wu, Y. P.; Chen, Y. S.; Bao, Z. N. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 2012, 6, 10384–10395.CrossRefGoogle Scholar
  17. [17]
    Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.CrossRefGoogle Scholar
  18. [18]
    Ong, P. L.; Euler, W. B.; Levitsky, I. A. Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 2010, 21, 105203.CrossRefGoogle Scholar
  19. [19]
    Del Gobbo, S.; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells. J. Mater. Chem. C 2013, 1, 6752–6758.CrossRefGoogle Scholar
  20. [20]
    Nasibulin, A. G.; Kaskela, A.; Mustonen, K.; Anisimov, A. S.; Ruiz, V.; Kivisto, S.; Rackauskas, S.; Timmermans, M. Y.; Pudas, M.; Aitchison, B. et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214–3221.CrossRefGoogle Scholar
  21. [21]
    Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.CrossRefGoogle Scholar
  22. [22]
    Fuhrer, M. S.; Lim, A. K. L.; Shih, L.; Varadarajan, U.; Zettl, A.; McEuen, P. L. Transport through crossed nanotubes. Physica E 2000, 6, 868–871.CrossRefGoogle Scholar
  23. [23]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.CrossRefGoogle Scholar
  24. [24]
    Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. ACS Nano 2008, 2, 2154–2159.CrossRefGoogle Scholar
  25. [25]
    Rakhshani, A. E. Heterojunction properties of electrodeposited CdTe/CdS solar cells. J. Appl. Phys. 2001, 90, 4265–4271.CrossRefGoogle Scholar
  26. [26]
    Siddons, G. P.; Merchin, D.; Back, J. H.; Jeong, J. K.; Shim, M. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 2004, 4, 927–931.CrossRefGoogle Scholar
  27. [27]
    Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantar-zadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.CrossRefGoogle Scholar
  28. [28]
    Moritsubo, S.; Murai, T.; Shimada, T.; Murakami, Y.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Exciton diffusion in air-suspended single-walled carbon nanotubes. Phys. Rev. Lett. 2010, 104, 247402.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscow RegionRussia
  2. 2.Department of Material ScienceSaint-Petersburg State Polytechnical UniversitySaint-PetersburgRussia
  3. 3.Department of Applied PhysicsAalto University School of ScienceEspooFinland
  4. 4.School of Energy StudiesSavitribai Phule Pune UniversityGaneshkhindIndia
  5. 5.Department of ChemistryUniversity of RhodeIslandUSA
  6. 6.Emitech, Inc.Fall RiverUSA

Personalised recommendations