Nano Research

, Volume 8, Issue 8, pp 2686–2697 | Cite as

Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2

  • Liqin Su
  • Yifei Yu
  • Linyou Cao
  • Yong ZhangEmail author
Research Article


This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temperature (25–500 °C) optical spectroscopy, which combines Raman and photoluminescence spectroscopies, is highly effective for investigating the interaction and material properties that are not accessible at the commonly used cryogenic temperature (e.g., a thermal activation process with an activation of a major fraction of the bandgap). This study investigates a set of monolayer WS2 films, either directly grown on sapphire and SiO2 substrates by CVD or transferred onto SiO2 substrate. The coupling with the substrate is shown to depend on the substrate type, the materialsubstrate bonding (even for the same substrate), and the excitation wavelength. The inherent difference in the states of strain between the as-grown and the transferred films has a significant impact on the material properties.


tungsten disulfide high temperature Raman temperature coefficient photoluminescence activation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_775_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1675 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  3. [3]
    Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phy. Rev. Lett. 2009, 102, 195505.CrossRefGoogle Scholar
  4. [4]
    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.CrossRefGoogle Scholar
  5. [5]
    Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal-structures of tungsten disulfide and diselenide. J. Solid State Chem. 1987, 70, 207–209.CrossRefGoogle Scholar
  6. [6]
    Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 122, 4153–4156.CrossRefGoogle Scholar
  7. [7]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  8. [8]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phy. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  9. [9]
    Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.CrossRefGoogle Scholar
  10. [10]
    Albe, K.; Klein, A. Density-functional-theory calculations of electronic band structure of single-crystal and single-layer WS2. Phy. Rev. B 2002, 66, 073413.CrossRefGoogle Scholar
  11. [11]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nano. 2012, 7, 699–712.CrossRefGoogle Scholar
  12. [12]
    Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2012, 13, 3447–3454.CrossRefGoogle Scholar
  13. [13]
    Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2012, 7, 791–797.CrossRefGoogle Scholar
  14. [14]
    Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phy. Rev. B 2012, 85, 033305.CrossRefGoogle Scholar
  15. [15]
    Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.CrossRefGoogle Scholar
  16. [16]
    Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.CrossRefGoogle Scholar
  17. [17]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nano. 2011, bd6, 147–150.CrossRefGoogle Scholar
  18. [18]
    Mak, K. F.; He, K.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nano. 2012, 7, 494–498.CrossRefGoogle Scholar
  19. [19]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nano. 2012, 7, 490–493.CrossRefGoogle Scholar
  20. [20]
    Mao, X. Z.; Xu, Y.; Xue, Q. X.; Wang, W. X.; Gao, D. Q. Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Res. Lett. 2013, 8, 430.CrossRefGoogle Scholar
  21. [21]
    Zhou, Y. G.; Su, Q. L.; Wang, Z. G.; Deng, H. Q.; Zu, X. T. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Phy. Chem. Chem. Phy. 2013, 15, 18464–18470.CrossRefGoogle Scholar
  22. [22]
    Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nano. 2013, 8, 100–103.CrossRefGoogle Scholar
  23. [23]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  24. [24]
    Scheuschner, N.; Ochedowski, O.; Kaulitz, A. M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of freestanding single- and few-layer MoS2. Phy. Rev. B 2014, 89, 125406.CrossRefGoogle Scholar
  25. [25]
    Sercombe, D.; Schwarz, S.; Pozo-Zamudio, O. D.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.CrossRefGoogle Scholar
  26. [26]
    Buscema, M.; Steele, G.; van der Zant, H. S. J.; Castellanos- Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 1–11.CrossRefGoogle Scholar
  27. [27]
    Su, L. Q.; Zhang, Y.; Yu, Y. F.; Cao, L. Y. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 2014, bd6, 4920–4927.CrossRefGoogle Scholar
  28. [28]
    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phy. Rev. B 2012, 85, 161403.CrossRefGoogle Scholar
  29. [29]
    Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Let. 2007, 7, 2645–2649.CrossRefGoogle Scholar
  30. [30]
    Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phy. Rev. B 2011, 84, 155413.CrossRefGoogle Scholar
  31. [31]
    Berkdemir, A.; Gutierrez, H. R.; Botello-Mendez, A. R.; Perea-Lopez, N.; Elias, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; Lopez-Urias, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 2013, 3, 1755.CrossRefGoogle Scholar
  32. [32]
    Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.CrossRefGoogle Scholar
  33. [33]
    Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W. Graphene annealing: How clean can it be? Nano Lett. 2011, 12, 414–419.CrossRefGoogle Scholar
  34. [34]
    Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 2015, 15, 486–491.CrossRefGoogle Scholar
  35. [35]
    Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.CrossRefGoogle Scholar
  36. [36]
    Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of largearea WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242.CrossRefGoogle Scholar
  37. [37]
    Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F. Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 1996, 62, 543–546.Google Scholar
  38. [38]
    Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.CrossRefGoogle Scholar
  39. [39]
    Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  40. [40]
    Yoon, D.; Son, Y. W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227–3231.CrossRefGoogle Scholar
  41. [41]
    Matthäus, A.; Ennaoui, A.; Fiechter, S.; Tiefenbacher, S.; Kiesewetter, T.; Diesner, K.; Sieber, I.; Jaegermann, W.; Tsirlina, T.; Tenne, R. Highly textured films of layered metal disulfide 2H-WS2: Preparation and optoelectronic properties. J. Electrochem. Soc. 1997, 144, 1013–1019.CrossRefGoogle Scholar
  42. [42]
    Li, Y.; Wang, J. W.; Li, J. B.; Zhang, Y. Unpublished work, 2015.Google Scholar
  43. [43]
    Ling, X.; Moura, L. G.; Pimenta, M. A.; Zhang, J. Chargetransfer mechanism in graphene-enhanced Raman scattering. J. Phy. Chem. C 2012, 116, 25112–25118.CrossRefGoogle Scholar
  44. [44]
    M., T.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Inter. 2013, bd6, 1158–1163.Google Scholar
  45. [45]
    Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lopez- Sanchez, O.; Krasnozhon, D.; Chen, M. W.; Gillet, P.; Morral, A. F. i.; Radenovic, A.; Kis, A. Large-area epitaxial monolayer MoS2. ArXiv e-prints [Online] 2014, 129. http:// (accessed Jan 22, 2015).Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations