Nano Research

, Volume 8, Issue 8, pp 2676–2685 | Cite as

Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Ge x alloy heterojunction

  • Taiping Zhang
  • Renrong LiangEmail author
  • Lin Dong
  • Jing Wang
  • Jun Xu
  • Caofeng PanEmail author
Research Article


A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1–x Ge x alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1–x Ge x alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1–x Ge x alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.


ZnO nanowire SiGe alloy infrared light emitting diode wavelength-tunable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Vispute, R. D.; Talyansky, V.; Choopun, S.; Sharma, R. P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J. B.; Spencer, M. G.; Li, Y. X. et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 1998, 73, 348–350.CrossRefGoogle Scholar
  2. [2]
    Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943–2945.CrossRefGoogle Scholar
  3. [3]
    Asil, H.; Gür, E.; Çinar, K.; Coskun, C. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics. Appl. Phys. Lett. 2009, 94, 2535–1.Google Scholar
  4. [4]
    Zhong, J.; Chen, H.; Saraf, G.; Lu, Y; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 2035–5.Google Scholar
  5. [5]
    An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 1211–8.Google Scholar
  6. [6]
    Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076–1082.CrossRefGoogle Scholar
  7. [7]
    Alivov, Ya. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719–4721.CrossRefGoogle Scholar
  8. [8]
    Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Stat. Sol. A 2004, 201, 2203–2212.CrossRefGoogle Scholar
  9. [9]
    Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323–328.CrossRefGoogle Scholar
  10. [10]
    Xu, S.; Xu, C.; Liu, Y.; Hu, Y. F.; Yang, R. S.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S. et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749–4753.CrossRefGoogle Scholar
  11. [11]
    Jha, S.; Qian, J. C.; Kutsay, O.; Kovac Jr, J. K.; Luan, C. Y.; Zapien, J. A.; Zhang, W. J.; Lee, S. T.; Bello, I. Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology 2011, 22, 2452–2.Google Scholar
  12. [12]
    Zhang, S. G.; Zhang, X. W.; Si, F. T.; Dong, J. J.; Wang, J. X.; Liu, X.; Yin, Z. G.; Gao, H. L. Ordered ZnO nanorods-based heterojunction light-emitting diodes with grapheme current spreading layer. Appl. Phys. Lett. 2012, 101, 1211–4.Google Scholar
  13. [13]
    Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 2013, 7, 752–758.CrossRefGoogle Scholar
  14. [14]
    Yang, Q.; Wang, W. H.; Xu, S.; Niu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012–4017.CrossRefGoogle Scholar
  15. [15]
    Yang, Q.; Liu, Y.; Pang, C.; Chen, J.; Wen, X.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607–613.CrossRefGoogle Scholar
  16. [16]
    Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, in press, DOI: 10.1016/j.nanoen.2014.11-033.Google Scholar
  17. [17]
    Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271–2274.CrossRefGoogle Scholar
  18. [18]
    Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Pen, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722.CrossRefGoogle Scholar
  19. [19]
    Chen, P. L.; Ma, X. Y.; Yang, D. R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J. Appl. Phys. 2007, 101, 0531–3.Google Scholar
  20. [20]
    Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Excitonrelated electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett. 2009, 94, 2411–0.CrossRefGoogle Scholar
  21. [21]
    Lee, S. W.; Cho, H. D.; Panin, G.; Kang, T. W. Vertical ZnO nanorod/Si contact light-emitting diode. Appl. Phys. Lett. 2011, 98, 0931–0.Google Scholar
  22. [22]
    Jung, B. O.; Lee, J. H.; Lee, J. Y.; Kim, J. H.; Cho, H. K. High-purity ultraviolet electroluminescence from n-ZnO nanowires/p+-Si heterostructure LEDs with i-MgO film as carrier control layer. J. Electrochem. Soc. 2012, 159, H102–H106.Google Scholar
  23. [23]
    Chan, V. F.; Su, W.; Zhang, C. X.; Wu, Z. L.; Tang, Y.; Sun, X. Q.; Xu, H. J. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays. Opt. Express 2012, 20, 24280–2427.Google Scholar
  24. [24]
    Tsai, J. K.; Shih, J. H.; Wu, T. C.; Meen, T. H. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes. Nanoscale Res. Lett. 2012, 7, 6–4.CrossRefGoogle Scholar
  25. [25]
    Xian, F. L.; Wang, X. X.; Xu, L. H.; Li, X. Y.; Bai, W. F. Color tunable electroluminescence from Co-doped ZnO nanorods/p-Si heterojunction. J. Lumin. 2013, 144, 154–157.CrossRefGoogle Scholar
  26. [26]
    Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia, X.; Yang, Y. J.; Chang, H. J.; Huang, H. M. et al. Electroluminescence from ZnO/Si-nanotips lightemitting diodes. Nano Lett. 2009, 9, 1839–1843.CrossRefGoogle Scholar
  27. [27]
    Weber, J.; Alonso, M. I. Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 1989, 40, 5683–5693.CrossRefGoogle Scholar
  28. [28]
    Rieger, M. M.; Vogl, P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGeysubstrates. Phys. Rev. B 1993, 48, 14276–1427.CrossRefGoogle Scholar
  29. [29]
    Fischetti, M. V.; Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234–2252.CrossRefGoogle Scholar
  30. [30]
    Moontragoon, P.; Ikonic, Z.; Harrison, P. Band structure calculations of Si-Ge-Sn alloys: Achieving direct band gap materials. Semicond. Sci. Technol. 2007, 22, 742–748.CrossRefGoogle Scholar
  31. [31]
    Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire laser based on the absorption-emission-absorption process. Adv. Mater. 2013, 25, 833–837.CrossRefGoogle Scholar
  32. [32]
    Yang, Z. Y.; Wang, D. L.; Meng, C.; Wu, Z. M.; Wang, Y.; Ma, Y. G.; Dai, L.; Liu, X. W.; Hasan, T.; Liu, X. et al. Broudly defining lasing wavelengths in single bandgap-graded semiconductor nanowire. Nano. Lett. 2014, 14, 3153–3159.CrossRefGoogle Scholar
  33. [33]
    Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 1585–1607.CrossRefGoogle Scholar
  34. [34]
    Bai, G. X.; Tsang, M. K.; Hao, J. H. Tuning the luminescence of phosphors: Beyond conventional chemical method. Adv. Optical Mater. 2015, 3, 431–462.CrossRefGoogle Scholar
  35. [35]
    Han, C. B.; He, C.; Li, X. J. Near-infrared light emission from a GaN/Si nanoheterostructure array. Adv. Mater. 2011, 23, 4811–4814.CrossRefGoogle Scholar
  36. [36]
    Han, C. B.; He, C.; Meng, X. B.; Wan, Y. R.; Tian, Y. T.; Zhang, Y. J.; Li, X. J. Effect of annealing treatment on electroluminescence from GaN/Si nanoheterostructure array. Opt. Express 2012, 20, 5636–5643.CrossRefGoogle Scholar
  37. [37]
    Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 2000, 76, 2011–2013.CrossRefGoogle Scholar
  38. [38]
    Zhang, R.; Yin, P. G.; Wang, N.; Guo, L. Photoluminnescence and Raman scattering of ZnO nanorods. Solid state Sci. 2009, 11, 865–869.CrossRefGoogle Scholar
  39. [39]
    Hartmann, J. M.; Bogumilowicz, Y.; Holliger, P.; Laugier, F.; Truche, R.; Rolland, G.; Séméria, M. N.; Renard, V.; Olshanetsky, E. B.; Estibals, O. et al. Reduced pressure chemical vapour deposition of SiGe virtual substrates for high mobility devices. Semicond. Sci. Technol. 2004, 19, 311–318.CrossRefGoogle Scholar
  40. [40]
    Liang, R. R.; Zhang, K.; Yang, Z. R.; Xu, Y.; Wang, J.; Xu, J. Fabrication and characterization of strained Si material using SiGe virtualsubstrate for high mobility devices. J. Semicond. 2007, 28, 1518–1522.Google Scholar
  41. [41]
    Li, B. B.; Yu, D. P.; Zhang, S. L. Raman spectral study of silicon nanowires. Phys. Rev. B 1999, 59, 1645–1648.CrossRefGoogle Scholar
  42. [42]
    Winer, K.; Alonso, M. I. Raman spectra of c-Si1-xGex alloys. Phys. Rev. B 1989, 39, 10056–1002.CrossRefGoogle Scholar
  43. [43]
    Torres, V. J. B.; Coutinho, J.; Briddon, P. R.; Barroso, M. Ab-initio vibrational properties of SiGe alloys. Thin Solid films 2008, 517, 395–397.CrossRefGoogle Scholar
  44. [44]
    Pagès, O.; Souhabi, J.; Torres V. J. B.; Postnikov, A. V.; Rustagi, K. C. Re-examination of the SiGe Raman spectra: Percolation/one-dimensional-pixel scheme and ab initio calculations. Phys. Rev. B 2012, 86, 0452–1.CrossRefGoogle Scholar
  45. [45]
    Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B. G.; Callahan, M. J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 1652–2.CrossRefGoogle Scholar
  46. [46]
    Huang, Y. Q.; Liu, M. D.; Li, Z.; Zeng, Y. K.; Liu, S. B. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mat. Sci. Eng. B 2003, 97, 111–116.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.Institute of MicroelectronicsTsinghua UniversityBeijingChina

Personalised recommendations