Nano Research

, Volume 8, Issue 8, pp 2620–2635 | Cite as

Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene

  • Alexander J. Marsden
  • Peter Brommer
  • James J. Mudd
  • M. Adam Dyson
  • Robert Cook
  • María Asensio
  • Jose Avila
  • Ana Levy
  • Jeremy Sloan
  • David Quigley
  • Gavin R. Bell
  • Neil R. Wilson
Open Access
Research Article


Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization are not well understood. By using atomic sources to control the extent of the oxygen and nitrogen functionalization, we studied the evolution in the structure and properties at the atomic scale. Atomic oxygen reversibly introduces epoxide groups whilst, under similar conditions, atomic nitrogen irreversibly creates diverse functionalities including substitutional, pyridinic, and pyrrolic nitrogen. Atomic oxygen leaves the Fermi energy at the Dirac point (i.e., undoped), whilst atomic nitrogen results in a net n-doping; however, the experimental results are consistent with the dominant electronic effect for both being a transition from delocalized to localized states, and hence the loss of the signature electronic structure of graphene.


graphene functionalization chemical vapor deposition density functional theory 

Supplementary material

12274_2015_768_MOESM1_ESM.pdf (4.5 mb)
Supplementary material, approximately 4.45 MB.


  1. [1]
    Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.CrossRefGoogle Scholar
  2. [2]
    Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 2008, 18, 1518–1525.CrossRefGoogle Scholar
  3. [3]
    Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301.CrossRefGoogle Scholar
  4. [4]
    Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.CrossRefGoogle Scholar
  5. [5]
    Mo, Z. Y.; Zheng, R. P.; Peng, H. L.; Liang, H. G.; Liao, S. J. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. J. Power Sources 2014, 245, 801–807.CrossRefGoogle Scholar
  6. [6]
    Wood, K. N.; O’ Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.CrossRefGoogle Scholar
  7. [7]
    Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.CrossRefGoogle Scholar
  8. [8]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  9. [9]
    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefGoogle Scholar
  10. [10]
    Zabet-Khosousi, A.; Zhao, L. Y.; Pálová, L.; Hybertsen, M. S.; Reichman, D. R.; Pasupathy, A. N.; Flynn, G. W. Segregation of sublattice domains in nitrogen-doped graphene. J. Am. Chem. Soc. 2014, 136, 1391–1397.CrossRefGoogle Scholar
  11. [11]
    Yuan, J. T.; Ma, L. P.; Pei, S. F.; Du, J. H.; Su, Y.; Ren, W. C.; Cheng, H. M. Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. ACS Nano 2013, 7, 4233–4241.CrossRefGoogle Scholar
  12. [12]
    Leconte, N.; Moser, J.; Ordejó n, P.; Tao, H. H.; Lherbier, A.; Bachtold, A.; Alsina, F.; Sotomayor Torres, C. M.; Charlier, J. C.; Roche, S. Damaging graphene with ozone treatment: A chemically tunable metal-insulator transition. ACS Nano 2010, 4, 4033–4038.CrossRefGoogle Scholar
  13. [13]
    Peltekis, N.; Kumar, S.; McEvoy, N.; Lee, K.; Weidlich, A.; Duesberg, G. S. The effect of downstream plasma treatments on graphene surfaces. Carbon 2012, 50, 395–403.CrossRefGoogle Scholar
  14. [14]
    Hossain, M. Z.; Johns, J. E.; Bevan, K. H.; Karmel, H. J.; Liang, Y. T.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Kawai, M. et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat. Chem. 2012, 4, 305–309.CrossRefGoogle Scholar
  15. [15]
    Barinov, A.; Malcioglu, B. O.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.CrossRefGoogle Scholar
  16. [16]
    Marsden, A. J.; Phillips, M.; Wilson, N. R. Friction force microscopy: A simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper. Nanotechnology 2013, 24, 255704.CrossRefGoogle Scholar
  17. [17]
    Wilson, N. R.; Marsden, A. J.; Saghir, M.; Bromley, C. J.; Schaub, R.; Costantini, G.; White, T. W.; Partridge, C.; Barinov, A.; Dudin, P. et al. Weak mismatch epitaxy and structural feedback in graphene growth on copper foil. Nano Res. 2013, 6, 99–112.CrossRefGoogle Scholar
  18. [18]
    Marsden, A. J.; Asensio, M. C.; Avila, J.; Dudin, P.; Barinov, A.; Moras, P.; Sheverdyaeva, P. M.; White, T. W.; Maskery, I.; Costantini, G. et al. Is graphene on copper doped? Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 643–646.CrossRefGoogle Scholar
  19. [19]
    Blume, R.; Kidambi, P. R.; Bayer, B. C.; Weatherup, R. S.; Wang, Z. J.; Weinberg, G.; Willinger, M. G.; Greiner, M.; Hofmann, S.; Knop- Gericke, A. et al. The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Phys. Chem. Chem. Phys. 2014, 16, 25989–26003.CrossRefGoogle Scholar
  20. [20]
    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  21. [21]
    Usachov, D.; Vilkov, O.; Grü neis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M. et al. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 2011, 11, 5401–5407.CrossRefGoogle Scholar
  22. [22]
    Zhang, L.; Ye, Y. F.; Cheng, D. D.; Zhang, W. H.; Pan, H. B.; Zhu, J. F. Simultaneous reduction and N-doping of graphene oxides by low-energy N2 + ion sputtering. Carbon 2013, 62, 365–373.CrossRefGoogle Scholar
  23. [23]
    Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J. F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.CrossRefGoogle Scholar
  24. [24]
    Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.CrossRefGoogle Scholar
  25. [25]
    Terrones, H.; Lv, R. T.; Terrones, M.; Dresselhaus, M. S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 2012, 75, 062501.CrossRefGoogle Scholar
  26. [26]
    Gómez Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.CrossRefGoogle Scholar
  27. [27]
    Cretu, O.; Krasheninnikov, A. V.; Rodríguez- Manzo, J. A.; Sun, L. T.; Nieminen, R. M.; Banhart, F. Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 2010, 105, 196102.CrossRefGoogle Scholar
  28. [28]
    Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Kim, D. Y.; Ho, K. M. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 2005, 95, 205501.CrossRefGoogle Scholar
  29. [29]
    Fujimoto, Y.; Saito, S. Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys. Rev. B 2011, 84, 245446.CrossRefGoogle Scholar
  30. [30]
    Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.; Miyata, S. Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 2012, 85, 165439.CrossRefGoogle Scholar
  31. [31]
    El-Barbary, A. A.; Telling, R. H.; Ewels, C. P.; Heggie, M. I.; Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 2003, 68, 144107.CrossRefGoogle Scholar
  32. [32]
    Robertson, A. W.; Allen, C. S.; Wu, Y. M. A.; He, K.; Olivier, J.; Neethling, J.; Kirkland, A. I.; Warner, J. H. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 2012, 3, 1144.CrossRefGoogle Scholar
  33. [33]
    Bostwick, A.; McChesney, J.; Emtsev, K.; Seyller, T.; Horn, K.; Kevan, S.; Rotenberg, E. Quasiparticle transformation during a metal-insulator transition in graphene. Phys. Rev. Lett. 2009, 103, 056404.CrossRefGoogle Scholar
  34. [34]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  35. [35]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  36. [36]
    Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. Electronic structure of N-doped graphene with native point defects. Phys. Rev. B 2013, 87, 165401.CrossRefGoogle Scholar
  37. [37]
    Usachov, D.; Fedorov, A.; Vilkov, O.; Senkovskiy, B.; Adamchuk, V. K.; Yashina, L. V.; Volykhov, A. A.; Farjam, M.; Verbitskiy, N. I.; Grü neis, A. et al. The chemistry of imperfections in N-graphene. Nano Lett. 2014, 14, 4892–4988.CrossRefGoogle Scholar
  38. [38]
    Nair, R. R.; Ren, W. C.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. J. et al. Fluorographene: A two-dimensional counterpart of Teflon. Small 2010, 6, 2877–2884.CrossRefGoogle Scholar
  39. [39]
    Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.CrossRefGoogle Scholar
  40. [40]
    Avila, J.; Razado- Colambo, I.; Lorcy, S.; Lagarde, B.; Giorgetta, J. L.; Polack, F.; Asensio, M. C. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys. Conf. Ser. 2013, 425, 192023.CrossRefGoogle Scholar
  41. [41]
    Meyer, R. R.; Kirkland, A. I.; Saxton, W. O. A new method for the determination of the wave aberration function for high resolution TEM: 1. Measurement of the symmetric aberrations. Ultramicroscopy 2002, 92, 89–109.CrossRefGoogle Scholar
  42. [42]
    Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570.CrossRefGoogle Scholar
  43. [43]
    Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.CrossRefGoogle Scholar
  44. [44]
    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.CrossRefGoogle Scholar
  45. [45]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  46. [46]
    Byrd, R. H.; Nocedal, J.; Schnabel, R. B. Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program. 1994, 63, 129–156.CrossRefGoogle Scholar
  47. [47]
    Popescu, V.; Zunger, A. Effective band structure of random alloys. Phys. Rev. Lett. 2010, 104, 236403.CrossRefGoogle Scholar
  48. [48]
    Popescu, V.; Zunger, A. Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 2012, 85, 085201.CrossRefGoogle Scholar
  49. [49]
    Brommer, P.; Quigley, D. Automated effective band structures for defective and mismatched supercells. J. Phys. Condens. Matter 2014, 26, 485501.CrossRefGoogle Scholar

Copyright information

© Neil R. Wilson 2015

Authors and Affiliations

  • Alexander J. Marsden
    • 1
  • Peter Brommer
    • 1
    • 2
  • James J. Mudd
    • 1
  • M. Adam Dyson
    • 1
  • Robert Cook
    • 1
  • María Asensio
    • 3
  • Jose Avila
    • 3
  • Ana Levy
    • 3
  • Jeremy Sloan
    • 1
  • David Quigley
    • 1
    • 2
  • Gavin R. Bell
    • 1
  • Neil R. Wilson
    • 1
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.Centre for Scientific ComputingUniversity of WarwickCoventryUK
  3. 3.Synchrotron SOLEIL, L’Orme des MerisiersGif sur Yvette CedexFrance

Personalised recommendations