Nano Research

, Volume 8, Issue 7, pp 2317–2328 | Cite as

High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature

  • Hakimeh Zare
  • Maziar Marandi
  • Somayeh Fardindoost
  • Vijay Kumar Sharma
  • Aydan Yeltik
  • Omid Akhavan
  • Hilmi Volkan Demir
  • Nima Taghavinia
Research Article

Abstract

We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-intensity ultraviolet (UV) light illumination. The resulting photo-induced dissociation of S2O32− ions conveniently triggers the formation of critical two-dimensional CdS epitaxy on the CdTe surface at room temperature, as opposed to initiating the growth of individual CdS core-only nanocrystals. This controlled colloidal hetero-epitaxy leads to a substantial increase in the photoluminescence (PL) quantum yield (QY) of the shelled nanocrystals in water (reaching 64%). With a systematic set of studies, the maximum PL QY is found to be almost independent of the illuminating UV intensity, while the shell formation kinetics required for reaching the maximum QY linearly depends on the illuminating UV intensity. A stability study of the QD films in air at various temperatures shows highly improved thermal stability of the shelled QDs (up to 120 °C in ambient air). These results indicate that the proposed aqueous CdTe/CdS core/shell nanocrystals hold great promise for applications requiring efficiency and stability.

Keywords

CdTe/CdS core/shell nanocrystal thermal stability photochemical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_742_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1229 KB.

References

  1. [1]
    Chen, Y. Y.; Liang, H. Applications of quantum dots with upconverting luminescence in bioimaging. J. Photochem. Photobiol. B 2014, 135, 23–32.CrossRefGoogle Scholar
  2. [2]
    Sun, P.; Zhang, H. Y.; Liu, C.; Fang, J.; Wang, M.; Chen, J.; Zhang, J. P.; Mao, C. B.; Xu, S. K. Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 2010, 26, 1278–1284.CrossRefGoogle Scholar
  3. [3]
    Park, J. Y.; Advincula, R. C. Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices. Phys. Chem. Chem. Phys. 2014, 16, 8589–8593.CrossRefGoogle Scholar
  4. [4]
    Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 2013, 7, 7295–7302.CrossRefGoogle Scholar
  5. [5]
    Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey, J.; Feng, Y.; Charbonneau, S. Red-emitting semiconductor quantum dot lasers. Science 1996, 274, 1350–1353.CrossRefGoogle Scholar
  6. [6]
    Lan, G. Y.; Yang, Z.; Lin, Y. W.; Lin, Z. H.; Liao, H. Y.; Chang, H. T. A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells. J. Mater. Chem. 2009, 19, 2349–2355.CrossRefGoogle Scholar
  7. [7]
    Zhu, H. M.; Yang, Y.; Lian, T. Q. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 2013, 46, 1270–1279.CrossRefGoogle Scholar
  8. [8]
    Green, M. Semiconductor quantum dots as biological imaging agents. Angew. Chem. Int. Ed. 2004, 43, 4129–4131.CrossRefGoogle Scholar
  9. [9]
    Coe-Sullivan, S.; Woo, W. K.; Steckel, J. S.; Bawendi, M.; Bulovic, V. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org. Electron. 2003, 4, 123–130.CrossRefGoogle Scholar
  10. [10]
    Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2012, 7, 13–23.CrossRefGoogle Scholar
  11. [11]
    Molaei, M.; Marandi, M.; Saievar-Iranizad, E.; Taghavinia, N.; Liu, B.; Sun, H. D.; Sun, X. W. Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 2012, 132, 467–473.CrossRefGoogle Scholar
  12. [12]
    Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.CrossRefGoogle Scholar
  13. [13]
    He, S. J.; Li, S. S.; Wang, F. Z.; Wang, A. Y.; Lin, J.; Tan, Z. A. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer. Nanotechnology 2013, 24, 175201.CrossRefGoogle Scholar
  14. [14]
    Qin, H. Y.; Niu, Y.; Meng, R. Y.; Lin, X.; Lai, R. C.; Fang, W.; Peng, X. G. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: Nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 2014, 136, 179–187.CrossRefGoogle Scholar
  15. [15]
    Li, H.; Shih, W. Y.; Shih, W. H. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule. Nanotechnology 2007, 18, 495605.CrossRefGoogle Scholar
  16. [16]
    Gu, Z. Y.; Zou, L.; Fang, Z.; Zhu, W. H.; Zhong, X. H. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology 2008, 19, 135604.CrossRefGoogle Scholar
  17. [17]
    Zhou, D.; Liu, M.; Lin, M.; Bu, X. Y.; Luo, X. T.; Zhang, H.; Yang, B. Hydrazine-mediated construction of nanocrystal self-assembly materials. ACS Nano 2014, 8, 10569–10581.Google Scholar
  18. [18]
    Chin, P. T. K.; Stouwdam, J. W.; van Bavel, S. S.; Janssen, R. A. J. Cluster synthesis of branched CdTe nanocrystals for use in light-emitting diodes. Nanotechnology 2008, 19, 205602.CrossRefGoogle Scholar
  19. [19]
    Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.CrossRefGoogle Scholar
  20. [20]
    Zhang, H.; Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li, W. Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 2003, 15, 1712–1715.CrossRefGoogle Scholar
  21. [21]
    Li, Z.; Dong, C. Q.; Tang, L. C.; Zhu, X.; Chen, H. J.; Ren, J. C. Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Luminescence 2011, 26, 439–448.CrossRefGoogle Scholar
  22. [22]
    Dai, M. Q.; Zheng, W.; Huang, Z. W.; Yung, L. Y. L. Aqueous phase synthesis of widely tunable photoluminescence emission CdTe/CdS core/shell quantum dots under a totally ambient atmosphere. J. Mater. Chem. 2012, 22, 16336–16345.CrossRefGoogle Scholar
  23. [23]
    Tsay, J. M.; Pflughoefft, M.; Bentolila, L. A.; Weiss, S. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J. Am. Chem. Soc. 2004, 126, 1926–1927.CrossRefGoogle Scholar
  24. [24]
    Hewa-Kasakarage, N. N.; Gurusinghe, N. P.; Zamkov, M. Blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals. J. Phys. Chem. C 2009, 113, 4362–4368.CrossRefGoogle Scholar
  25. [25]
    Zeng, Q. H.; Kong, X. G.; Sun, Y. J.; Zhang, Y. L.; Tu, L. P.; Zhao, J. L.; Zhang, H. Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. J. Phys. Chem. C 2008, 112, 8587–8593.CrossRefGoogle Scholar
  26. [26]
    Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.CrossRefGoogle Scholar
  27. [27]
    Trindade, T.; O’Brien, P.; Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater. 2001, 13, 3843–3858.CrossRefGoogle Scholar
  28. [28]
    Li, L. L.; Chen, Y.; Lu, Q.; Ji, J.; Shen, Y. Y.; Xu, M.; Fei, R.; Yang, G. H.; Zhang, K.; Zhang, J. R. et al. Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Sci. Rep. 2013, 3, 1529.Google Scholar
  29. [29]
    Pai, S. C.; Joshi, M. P.; Mohan, S. R.; Deshpande, U. P.; Dhami, T. S.; Khatei, J.; Rao, K. S. K.; Sanjeev, G. Electron irradiation effects on TGA-capped CdTe quantum dots. J. Phys. D. Appl. Phys. 2013, 46, 175304.CrossRefGoogle Scholar
  30. [30]
    He, Y.; Lu, H. T.; Sai, L. M.; Su, Y. Y.; Hu, M.; Fan, C. H.; Huang, W.; Wang, L. H. Microwave synthesis of waterdispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 2008, 20, 3416–3421.CrossRefGoogle Scholar
  31. [31]
    Wang, C. L.; Zhang, H.; Zhang, J. H.; Li, M. J.; Sun, H. Z.; Yang, B. Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals. J. Phys. Chem. C 2007, 111, 2465–2469.CrossRefGoogle Scholar
  32. [32]
    Bao, H. B.; Gong, Y. J.; Li, Z.; Gao, M. Y. Enhancement effect of illumination on the photoluminescence of watersoluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater. 2004, 16, 3853–3859.CrossRefGoogle Scholar
  33. [33]
    Xu, B.; Cai, B.; Liu, M.; Fan, H. S. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shellshell quantum dots with high fluorescence strength and biocompatibility. Nanotechnology 2013, 24, 205601.CrossRefGoogle Scholar
  34. [34]
    Marandi, M.; Taghavinia, N.; Zad, A. I.; Mahdavi, S. M. Fine tuning of the size of CdS nanoparticles synthesized by a photochemical method. Nanotechnology 2006, 17, 1230–1235.CrossRefGoogle Scholar
  35. [35]
    Marandi, M.; Taghavinia, N.; Zad, A. I.; Mahdavi, S. M. A photochemical method for controlling the size of CdS nanoparticles. Nanotechnology 2005, 16, 334–338.CrossRefGoogle Scholar
  36. [36]
    Taghavinia, N.; Iraji-zad, A.; Mahdavi, S. M.; Reza-esmaili, M. Photo-induced CdS nanoparticles growth. Physica E 2005, 30, 114–119.CrossRefGoogle Scholar
  37. [37]
    Liu, Y. F.; Chen, W.; Joly, A. G.; Wang, Y. Q.; Pope, C.; Zhang, Y. B.; Bovin, J. O.; Sherwood, P. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. J. Phys. Chem. B 2006, 110, 16992–17000.CrossRefGoogle Scholar
  38. [38]
    Crosby G. A.; Demas, J. N. Measurement of photoluminescence quantum yields-Review. J. Phys. Chem. 1971, 75, 991–1024.CrossRefGoogle Scholar
  39. [39]
    Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.CrossRefGoogle Scholar
  40. [40]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  41. [41]
    He, Y.; Lu, H. T.; Sai, L. M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J. Phys. Chem. B 2006, 110, 13370–13374.Google Scholar
  42. [42]
    Peng, H.; Zhang, L. J.; Soeller, C.; Travas-Sejdic, J. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. J. Lumin. 2007, 127, 721–726.CrossRefGoogle Scholar
  43. [43]
    Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.CrossRefGoogle Scholar
  44. [44]
    Wang, J.; Long, Y. T.; Zhang, Y. L.; Zhong, X. H.; Zhu, L. Y. Preparation of highly luminescent CdTe/CdS core/shell quantum dots. Chemphyschem 2009, 10, 680–685.CrossRefGoogle Scholar
  45. [45]
    Reiss, P.; Bleuse, J.; Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2, 781–784.CrossRefGoogle Scholar
  46. [46]
    Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.CrossRefGoogle Scholar
  47. [47]
    Lakowicz, J. R. Principles of fluorescence spectroscopy; Springer: New York, 2006.Google Scholar
  48. [48]
    Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.CrossRefGoogle Scholar
  49. [49]
    Xie, R. G.; Kolb, U.; Li, J. X.; Basché, T.; Mews, A. Synthesis and characterization of highly luminescent CdSecore CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hakimeh Zare
    • 1
  • Maziar Marandi
    • 2
  • Somayeh Fardindoost
    • 1
  • Vijay Kumar Sharma
    • 3
    • 4
  • Aydan Yeltik
    • 3
  • Omid Akhavan
    • 1
    • 5
  • Hilmi Volkan Demir
    • 3
    • 4
  • Nima Taghavinia
    • 1
    • 5
  1. 1.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran
  2. 2.Department of Physics, Faculty of SciencesArak UniversityArakIran
  3. 3.Department of Physics, Department of Electrical and Electronics Engineering, and UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  4. 4.Luminous! Center of Excellence for Semiconductor Lighting and Displays, Microelectronics Division, School of Electrical and Electronics Engineering, and Physics and Applied Physics Division, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  5. 5.Physics DepartmentSharif University of TechnologyTehranIran

Personalised recommendations