Nano Research

, Volume 8, Issue 7, pp 2288–2301 | Cite as

Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties

  • Marcin Wysokowski
  • Mykhailo Motylenko
  • Jan Beyer
  • Anna Makarova
  • Hartmut Stöcker
  • Juliane Walter
  • Roberta Galli
  • Sabine Kaiser
  • Denis Vyalikh
  • Vasilii V. Bazhenov
  • Iaroslav Petrenko
  • Allison L. Stelling
  • Serguei L. Molodtsov
  • Dawid Stawski
  • Krzysztof J. Kurzydłowski
  • Enrico Langer
  • Mikhail V. Tsurkan
  • Teofil Jesionowski
  • Johannes Heitmann
  • Dirk C. Meyer
  • Hermann Ehrlich
Research Article


This work presents an extreme biomimetics route for the creation of nanostructured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide-chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150–300 nm) size distribution and predominantly hexagonal phase, demonstrating the chitin template’s control over the crystal morphology. The formed GeO2–chitin composite showed several specific physical properties, such as a striking enhancement in photoluminescence exceeding values previously reported in GeO2-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.


extreme biomimetics chitin–GeO2 photoluminescence near-edge X-ray absorption fine structure (NEXAFS) spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_739_MOESM1_ESM.pdf (2.7 mb)
Supplementary material, approximately 2809 KB.


  1. [1]
    Ehrlich, H. Biological Materials of Marine Origin; Springer Science+Business Media: Dordrecht, 2015.Google Scholar
  2. [2]
    Ehrlich, H.; Simon, P.; Motylenko, M.; Wysokowski, M.; Bazhenov, V. V.; Galli, R.; Stelling, A. L.; Stawski, D.; Ilan, M.; Stöcker, H. et al. Extreme biomimetics: Formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J. Mater. Chem. B 2013, 1, 5092–5099.CrossRefGoogle Scholar
  3. [3]
    Wysokowski, M.; Motylenko, M.; Bazhenov, V. V.; Stawski, D.; Petrenko, I.; Ehrlich, A.; Behm, T.; Kljajic, Z.; Stelling, A. L.; Jesionowski, T. et al. Poriferan chitin as a template for hydrothermal zirconia deposition. Front. Mater. Sci. 2013, 7, 248–260.CrossRefGoogle Scholar
  4. [4]
    Wysokowski, M.; Motylenko, M.; Stöcker, H.; Bazhenov, V. V.; Langer, E.; Dobrowolska, A.; Czaczyk, K.; Galli, R.; Stelling, A. L.; Behm, T. et al. An extreme biomimetic approach: Hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J. Mater. Chem. B 2013, 1, 6469–6476.CrossRefGoogle Scholar
  5. [5]
    Wysokowski, M.; Motylenko, M.; Walter, J.; Lota, G.; Wojciechowski, J.; Stöcker, H.; Galli, R.; Stelling, A. L.; Himcinschi, C.; Niederschlag, E. et al. Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv. 2014, 4, 61743–61752.CrossRefGoogle Scholar
  6. [6]
    Wysokowski, M.; Behm, T.; Born, R.; Bazhenov, V. V.; Meiβner, H.; Richter, G.; Szwarc-Rzepka, K.; Makarova, A.; Vyalikh, D.; Schupp, P. et al. Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater. Sci. Eng. C 2013, 33, 3935–3941.CrossRefGoogle Scholar
  7. [7]
    Wysokowski, M.; Piasecki, A.; Bazhenov, V. V.; Paukszta, D.; Born, R.; Petrenko, I.; Jesionowski, T. Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions. J. Chitin Chitosan Sci. 2013, 1, 26–33.CrossRefGoogle Scholar
  8. [8]
    Ehrlich, H. Chitin and collagen as universal and alternative templates in biomineralization. Int. Geol. Rev. 2010, 52, 661–699.CrossRefGoogle Scholar
  9. [9]
    Roberts, G. A. F. Chitin chemistry, 1st ed.; MacMillian: London, 1992.Google Scholar
  10. [10]
    Muzzarelli, R. A. A.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M. G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012.CrossRefGoogle Scholar
  11. [11]
    Ehrlich, H.; Rigby, J. K.; Botting, J. P.; Tsurkan, M.; Werner, C.; Schwille, P.; Petrášek, Z.; Pisera, A.; Simon, P.; Sivkov, V. et al. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci. Rep. 2013, 3, 3497.CrossRefGoogle Scholar
  12. [12]
    Stawski, D.; Rabiej, S.; Herczyńska, L.; Draczyński, Z. Thermogravimetric analysis of chitins of different origin. J. Therm. Anal. Calorim. 2008, 93, 489–494.CrossRefGoogle Scholar
  13. [13]
    Georgieva, V.; Zvezdova, D.; Vlaev, L. Non-isothermal kinetics of thermal degradation of chitin. J. Therm. Anal. Calorim. 2013, 111, 763–771.CrossRefGoogle Scholar
  14. [14]
    Wang, Y. C.; Chang, Y. G.; Yu, L.; Zhang, C. Y.; Xu, X. Q.; Xue, Y.; Li, Z. J.; Xue, C. H. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydr. Polym. 2013, 92, 90–97.CrossRefGoogle Scholar
  15. [15]
    Aida, T. M.; Oshima, K.; Abe, C.; Maruta, R.; Iguchi, M.; Watanabe, M.; Smith, R. L. Dissolution of mechanically milled chitin in high temperature water. Carbohydr. Polym. 2014, 106, 172–178.CrossRefGoogle Scholar
  16. [16]
    Ramana, C. V.; Carbajal-Franco, G.; Vemuri, R. S.; Troitskaia, I. B.; Gromilov, S. A.; Atuchin, V. V. Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure. Mater. Sci. Eng. B 2010, 174, 279–284.CrossRefGoogle Scholar
  17. [17]
    Heigl, F.; Armelao, L.; Sun, X. H. J.; Didychuk, C.; Zhou, X. T.; Regier, T.; Blyth, R. I. R.; Kim, P. S. G.; Rosenberg, R. A; Sham, T. K. XANES and photoluminescence studies of crystalline GeO2 (Tb) nanowires. J. Phys.-Conf. Ser. 2009, 190, 012130.CrossRefGoogle Scholar
  18. [18]
    Javadi, M.; Yang, Z. Y.; Veinot, J. G. C. Surfactant-free synthesis of GeO2 nanocrystals with controlled morphologies. Chem. Commun. 2014, 50, 6101–6104.CrossRefGoogle Scholar
  19. [19]
    Zhang, S. W.; Yin, B. S.; Jiao, Y.; Liu, Y.; Zhang, X.; Qu, F. Y.; Umar, A.; Wu, X. Ultra-long germanium oxide nanowires: Structures and optical properties. J. Alloys Compd. 2014, 606, 149–153.CrossRefGoogle Scholar
  20. [20]
    Balitskiĭ, D. B.; Sil’vestrova, O. Y.; Balitskiĭ, V. S.; Pisarevskiĭ, Y. V; Pushcharovskiĭ, D. Y.; Philippot, E. Elastic, piezoelectric, and dielectric properties of α-GeO2 single crystals. Crystallogr. Reports 2000, 45, 145–147.CrossRefGoogle Scholar
  21. [21]
    Zhao, Q.; Lorenz, H.; Turner, S.; Lebedev, O. I.; Van Tendeloo, G.; Rameshan, C.; Klötzer, B.; Konzett, J.; Penner, S. Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming. Appl. Catal. A-Gen. 2010, 375, 188–195.CrossRefGoogle Scholar
  22. [22]
    Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano Lett. 2013, 13, 1230–1236.CrossRefGoogle Scholar
  23. [23]
    Richet, P. GeO2 vs SiO2: Glass transitions and thermodynamic properties of polymorphs. Phys. Chem. Miner. 1990, 17, 79–88.CrossRefGoogle Scholar
  24. [24]
    Madon, M.; Gillet, P.; Julien, C.; Price, G. A vibrational study of phase transitions among the GeO2 polymorphs. Phys. Chem. Miner. 1991, 18, 7–18.CrossRefGoogle Scholar
  25. [25]
    Lippincott, E. R.; Van Valkenburg, A.; Weir, C. E.; Bunting, E. N. Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J. Res. Natl. Bur. Stand. 1958, 61, 61–70.CrossRefGoogle Scholar
  26. [26]
    Micoulaut, M.; Cormier, L.; Henderson, G. S. The structure of amorphous, crystalline and liquid GeO2. J. Phys.-Condens. Matter 2006, 18, R753–R784.Google Scholar
  27. [27]
    Jang, J.; Koo, J.; Bae, B. S. Fabrication and ultraviolet absorption of sol-gel derived germanium oxide glass thin films. J. Am. Ceram. Soc. 2000, 83, 1356–1360.CrossRefGoogle Scholar
  28. [28]
    Laubengayer, A. W.; Brandt, P. L. Germanium. XXXVII. Germanium dioxide gel. Preparation and properties. J. Am. Chem. Soc. 1932, 54, 549–552.CrossRefGoogle Scholar
  29. [29]
    Krishnan, V.; Gross, S.; Müller, S.; Armelao, L.; Tondello, E.; Bertagnolli, H. Structural investigations on the hydrolysis and condensation behavior of pure and chemically modified alkoxides. 2. Germanium alkoxides. J. Phys. Chem. B 2007, 111, 7519–7528.CrossRefGoogle Scholar
  30. [30]
    Jiang, Z.; Xie, T.; Wang, G. Z.; Yuan, X. Y.; Ye, C. H.; Cai, W. P.; Meng, G. W.; Li, G. H.; Zhang, L. D. GeO2 nanotubes and nanorods synthesized by vapor phase reactions. Mater. Lett. 2005, 59, 416–419.CrossRefGoogle Scholar
  31. [31]
    Wu, H. P.; Liu, J. F.; Ge, M. Y.; Niu, L.; Zeng, Y. W.; Wang, Y. W.; Lv, G. L.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z. Preparation of monodisperse GeO2 nanocubes in a reverse micelle system. Chem. Mater. 2006, 18, 1817–1820.CrossRefGoogle Scholar
  32. [32]
    Ramana, C. V.; Troitskaia, I. B.; Gromilov, S. A.; Atuchin, V. V. Electrical properties of germanium oxide with α-quartz structure prepared by chemical precipitation. Ceram. Int. 2012, 38, 5251–5255.CrossRefGoogle Scholar
  33. [33]
    Atuchin, V. V.; Gavrilova, T. A.; Gromilov, S. A.; Kostrovsky, V. G.; Pokrovsky, L. D.; Troitskaia, I. B.; Vemuri, R. S.; Carbajal-Franco, G.; Ramana, C. V. Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure. Cryst. Growth Des. 2009, 9, 1829–1832.CrossRefGoogle Scholar
  34. [34]
    Shinde, S. L.; Nanda, K. K. Thermal oxidation strategy for the synthesis of phase-controlled GeO2 and photoluminescence characterization. CrystEngComm 2013, 15, 1043–1046.CrossRefGoogle Scholar
  35. [35]
    Gunji, M.; Thombare, S. V.; Hu, S.; McIntyre, P. C. Directed synthesis of germanium oxide nanowires by vapor-liquidsolid oxidation. Nanotechnology 2012, 23, 385603.CrossRefGoogle Scholar
  36. [36]
    Zhang, Y. J.; Zhu, J.; Zhang, Q.; Yan, Y. J.; Wang, N. L.; Zhang, X. Z. Synthesis of GeO2 nanorods by carbon nanotubes template. Chem. Phys. Lett. 2000, 317, 504–509.CrossRefGoogle Scholar
  37. [37]
    Lu, Q. Y.; Gao, F.; Li, Y. Q.; Zhou, Y. M.; Zhao, D. Y. Synthesis of germanium oxide mesostructures with a new intermediate state. Microporous Mesoporous Mater. 2002, 56, 219–225.CrossRefGoogle Scholar
  38. [38]
    Zou, X. D.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O’Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 2005, 437, 716–719.CrossRefGoogle Scholar
  39. [39]
    Cheng, J.; Xu, R. R.; Yang, G. D. Synthesis, structure and characterization of a novel germanium dioxide with occluded tetramethylammonium hydroxide. J. Chem. Soc., Dalton Trans. 1991, 1537–1540.Google Scholar
  40. [40]
    Rimer, J. D.; Roth, D. D.; Vlachos, D. G.; Lobo, R. F. Self-assembly and phase behavior of germanium oxide nanoparticles in basic aqueous solutions. Langmuir 2007, 23, 2784–2791.CrossRefGoogle Scholar
  41. [41]
    Kim, H. Y.; Viswanathamurthi, P.; Bhattarai, N.; Lee, D. R. Preparation and morphology of germanium oxide nanofibers. Rev. Adv. Mater. Sci 2003, 5, 220–223.Google Scholar
  42. [42]
    Patwardhan, S. V.; Clarson, S. J. Bioinspired mineralisation: Macromolecule mediated synthesis of amorphous germania structures. Polymer 2005, 46, 4474–4479.CrossRefGoogle Scholar
  43. [43]
    Davis, T. M.; Snyder, M. A.; Tsapatsis, M. Germania nanoparticles and nanocrystals at room temperature in water and aqueous lysine sols. Langmuir 2007, 23, 12469–12472.CrossRefGoogle Scholar
  44. [44]
    Sewell, S. L.; Rutledge, R. D.; Wright, D. W. Versatile biomimetic dendrimer templates used in the formation of TiO2 and GeO2. Dalton Trans. 2008, 3857–3865.Google Scholar
  45. [45]
    Boix, E.; Puddu, V.; Perry, C. C. Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras. Dalton Trans. 2014, 43, 16902–16910.CrossRefGoogle Scholar
  46. [46]
    Ehrlich, H.; Ilan, M.; Maldonado, M.; Muricy, G.; Bavestrello, G.; Kljajic, Z.; Carballo, J. L.; Schiaparelli, S.; Ereskovsky, A.; Schupp, P. et al. Three-dimensional chitinbased scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int. J. Bol. Macromol. 2010, 47, 132–140.Google Scholar
  47. [47]
    Fedoseenko, S.; Vyalikh, D.; Iossifov, I.; Follath, R.; Gorovikov, S.; Püttner, R.; Schmidt, J. S.; Molodtsov, S.; Adamchuk, V.; Gudat, W. et al. Commissioning results and performance of the high-resolution Russian–German Beamline at BESSY II. Nucl. Instrum. Meth. A 2003, 505, 718–728.CrossRefGoogle Scholar
  48. [48]
    Kucheyev, S. O.; Baumann, T. F.; Wang, Y. M.; van Buuren, T.; Poco, J. F.; Satcher, J. H.; Hamza, A. V. Monolithic, high surface area, three-dimensional GeO2 nanostructures. Appl. Phys. Lett. 2006, 88, 103117.CrossRefGoogle Scholar
  49. [49]
    Bertini, L.; Ghigna, P.; Scavini, M.; Cargnoni, F. Germanium K edge in GeO2 polymorphs. Correlation between local coordination and electronic structure of germanium. Phys. Chem. Chem. Phys. 2003, 5, 1451–1456.CrossRefGoogle Scholar
  50. [50]
    Cárdenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polym. Sci. 2004, 93, 1876–1885.CrossRefGoogle Scholar
  51. [51]
    Ehrlich, H.; Maldonado, M.; Spindler, K.; Eckert, C.; Hanke, T.; Born, R.; Simon, P.; Heinemann, S.; Worch, H. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. Part B 2007, 356, 347–356.CrossRefGoogle Scholar
  52. [52]
    Kanno, Y.; Nishino, J. Effect of hydrolysis water on the crystallization of sol–gel-derived GeO2. J. Mater. Sci. Lett. 1993, 12, 110–112.Google Scholar
  53. [53]
    Zou, X.; Liu, B. B.; Li, Q. J.; Li, Z. P.; Liu, B.; Wu, W.; Zhao, Q.; Sui, Y. M.; Li, D. M.; Zou, B. et al. One-step synthesis, growth mechanism and photoluminescence properties of hollow GeO2 walnuts. CrystEngComm 2011, 13, 979–984.CrossRefGoogle Scholar
  54. [54]
    Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Khil, M. S.; Lee, D. R.; Suh, E. K. GeO2 fibers: Preparation, morphology and photoluminescence property. J. Chem. Phys. 2004, 121, 441–445.CrossRefGoogle Scholar
  55. [55]
    Wu, W.; Zou, X.; Li, Q. J.; Liu, B. B.; Liu, B.; Liu, R.; Liu, D. D.; Li, Z. P.; Cui, W.; Liu, Z. D. et al. Simple synthesis and luminescence characteristics of PVP-capped GeO2 nanoparticles. J. Nanomater. 2011, 2011, 841701.Google Scholar
  56. [56]
    Jing, C. B.; Hou, J. X.; Xu, X. G. Fabrication and optical characteristics of thick GeO2 sol–gel coatings. Opt. Mater. 2008, 30, 857–864.CrossRefGoogle Scholar
  57. [57]
    Pearson, F. G.; Marchessault, R. H.; Liang, C. Y. Infrared spectra of crystalline polysaccharides. V. Chitin. J. Polym. Sci. 1960, 43, 101–116Google Scholar
  58. [58]
    Qin, J. W.; Wang, X.; Cao, M. H.; Hu, C. W. Germanium quantum dots embedded in N-doping graphene matrix with sponge-like architecture for enhanced performance in lithium-ion batteries. Chem.—Eur. J. 2014, 20, 9675–9682.CrossRefGoogle Scholar
  59. [59]
    Haines, J.; Cambon, O.; Philippot, E.; Chapon, L.; Hull, S. A neutron diffraction study of the thermal stability of the α-quartz-type structure in germanium dioxide. J. Solid State Chem. 2002, 166, 434–441.CrossRefGoogle Scholar
  60. [60]
    Bolzan, A. A.; Fong, C.; Kennedy, B. J.; Howard C. J. Structural studies of rutile-type metal dioxides. Acta Crystallogr. B 1997, 53, 373–380.CrossRefGoogle Scholar
  61. [61]
    Pöhlker, C.; Huffman, J. A.; Pöschl, U. Autofluorescence of atmospheric bioaerosols–Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 2012, 5, 37–71.CrossRefGoogle Scholar
  62. [62]
    Zacharias, M.; Fauchet, P. M. Blue luminescence in films containing Ge and GeO2 nanocrystals: The role of defects. Appl. Phys. Lett. 1997, 71, 380–382.CrossRefGoogle Scholar
  63. [63]
    Kim, H. W.; Lee, J. W.; Kebede, M. A.; Kim, H. S.; Lee, C. Catalyst-free synthesis of GeO2 nanowires using the thermal heating of Ge powders. Curr. Appl. Phys. 2009, 9, 1300–1303.CrossRefGoogle Scholar
  64. [64]
    Peng, M. F.; Li, Y.; Gao, J.; Zhang, D.; Jiang, Z.; Sun, X. H. Electronic structure and photoluminescence origin of singlecrystalline germanium oxide nanowires with green light emission. J. Phys. Chem. C 2011, 115, 11420–11426.CrossRefGoogle Scholar
  65. [65]
    Shi, R. Y.; Zhang, R. G.; Chen, X. B.; Yang, F.; Zhao, Q.; Yu, J.; Zhao, H.; Wang, L.; Liu, B.; Bao, L. et al. Controllable growth of GeO2 nanowires with the cubic and hexagonal phases and their photoluminescence. J. Cryst. Growth 2011, 336, 6–13.CrossRefGoogle Scholar
  66. [66]
    Yu, J.; Yang, H. Q.; Shi, R. Y.; Zhang, L. H.; Zhao, H.; Wang, X. W. Vapor–liquid–solid growth and narrow-band ultraviolet photoluminescence of well-aligned GeO2 nanowire arrays with controllable aspect ratios. Appl. Phys. A 2010, 100, 493–499.CrossRefGoogle Scholar
  67. [67]
    Trukhin, A.; Kink, M.; Maksimov, Y.; Jansons, J.; Kink, R. Luminescence of GeO2 glass, rutile-like and α-quartz-like crystals. J. Non. Cryst. Solids 2006, 352, 160–166.CrossRefGoogle Scholar
  68. [67]
    Narayanan, D.; Jayakumar, R.; Chennazhi, K. Versatile carboxymethyl chitin and chitosan nanomaterials: A review. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2014, 6, 574–598.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marcin Wysokowski
    • 1
  • Mykhailo Motylenko
    • 2
  • Jan Beyer
    • 3
  • Anna Makarova
    • 4
  • Hartmut Stöcker
    • 5
  • Juliane Walter
    • 5
  • Roberta Galli
    • 6
  • Sabine Kaiser
    • 5
  • Denis Vyalikh
    • 4
    • 7
  • Vasilii V. Bazhenov
    • 5
  • Iaroslav Petrenko
    • 5
  • Allison L. Stelling
    • 8
  • Serguei L. Molodtsov
    • 5
    • 9
    • 10
  • Dawid Stawski
    • 11
  • Krzysztof J. Kurzydłowski
    • 12
  • Enrico Langer
    • 13
  • Mikhail V. Tsurkan
    • 14
  • Teofil Jesionowski
    • 1
  • Johannes Heitmann
    • 3
  • Dirk C. Meyer
    • 5
  • Hermann Ehrlich
    • 5
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  3. 3.Institute of Applied PhysicsTU Bergakademie FreibergFreibergGermany
  4. 4.Institute of Solid State PhysicsDresden University of TechnologyDresdenGermany
  5. 5.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany
  6. 6.Faculty of Medicine Carl Gustav Carus, Department of Anaesthesiology and Intensive Care Medicine, Clinical Sensoring and MonitoringTU DresdenDresdenGermany
  7. 7.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  8. 8.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  9. 9.European X-Ray Free-Electron Laser Facility (XFEL) GmbHHamburgGermany
  10. 10.ITMO UniversitySt. PetersburgRussia
  11. 11.Department of Commodity and Material Sciences and Textile MetrologyTechnical University of LodzLódźPoland
  12. 12.Materials Design Group, Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  13. 13.Institute of Semiconductors and MicrosystemsTU DresdenDresdenGermany
  14. 14.Leibniz Institute of Polymer ResearchMax Bergmann Centre for BiomaterialsDresdenGermany

Personalised recommendations