Nano Research

, Volume 8, Issue 7, pp 2242–2250 | Cite as

Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity

  • Colin Preston
  • Da Song
  • Jaiqi Dai
  • Zois Tsinas
  • John Bavier
  • John Cumings
  • Vince Ballarotto
  • Liangbing Hu
Research Article


Spray-coated carbon nanotube films offer a simple and printable solution for fabricating low cost, lightweight, and flexible thin-film electronics. However, current nanotube spray inks require either a disruptive surfactant or destructive surface functionalization to stabilize dispersions at the cost of the electrical properties of the deposited film. We demonstrate that high-purity few-walled carbon nanotubes may be stabilized in isopropanol after surface functionalization and that optimizing the ink stability dramatically enhances the conductivity of subsequent spray-coated thin films. We consequently report a surfactant-free carbon nanotube ink for spray-coated thin films with conductivities reaching 2,100 S/cm. Zeta-potential measurements, used to quantify the nanotube ink dispersion quality, directly demonstrate a positive correlation with the spraycoated film conductivity, which is the key metric for high-performance printed electronics.


carbon nanotubes surfactant-free ink spray coating high conductivity zeta potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_735_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 2044 KB.


  1. [1]
    Scarselli, M.; Castrucci, P.; Crescenzi, M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys: Condens. Mat. 2012, 24, 313202.Google Scholar
  2. [2]
    Bandaru, P. R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechno. 2007, 7, 1239–1267.CrossRefGoogle Scholar
  3. [3]
    Hu, L. B.; Hecht, D. S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844.CrossRefGoogle Scholar
  4. [4]
    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  5. [5]
    Cui, Z.; Zhao, J.; Zhang, T. Printed carbon nanotube devices and their applications. In 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kyoto, Japan, March 5–8, 2012; IEEE: Danvers, MA, 2012.CrossRefGoogle Scholar
  6. [6]
    Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.CrossRefGoogle Scholar
  7. [7]
    Martinez, M.; Callejas, M.; Benito, A.; Cochet, M.; Seeger, T.; Ansón, A.; Schreiber, J.; Gordon, C.; Marhic, C.; Chauvet, O. et al. Sensitivity of single wall carbon nanotubes to oxidative processing: Structural modification, intercalation and functionalisation. Carbon 2003, 41, 2247–2256.CrossRefGoogle Scholar
  8. [8]
    Bower, C.; Kleinhammes, A.; Wu, Y.; Zhou, O. Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chem. Phys. Lett. 1998, 288, 481–486.CrossRefGoogle Scholar
  9. [9]
    Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.CrossRefGoogle Scholar
  10. [10]
    Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.CrossRefGoogle Scholar
  11. [11]
    Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.CrossRefGoogle Scholar
  12. [12]
    Yu, A.; Su, C. C. L.; Roes, I.; Fan, B.; Haddon, R. C. Gramscale preparation of surfactant-free, carboxylic acid groups functionalized, individual single-walled carbon nanotubes in aqueous solution. Langmuir 2010, 26, 1221–1225.CrossRefGoogle Scholar
  13. [13]
    Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.CrossRefGoogle Scholar
  14. [14]
    Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 2010, 65, 2000–2008.CrossRefGoogle Scholar
  15. [15]
    Lee, S. W.; Gallant, B. M.; Lee, Y.; Yoshida, N.; Kim, D.; Tamada, Y.; S. Noda, S.; Yamada, A.; Shao-Horn, Y. Selfstanding positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ. Sci. 2012, 5, 5437–5444.CrossRefGoogle Scholar
  16. [16]
    Feng, Y.; Ju, X.; Feng, W.; Zhang, H.; Cheng, Y.; Liu, J.; Fujii, A.; Ozaki, M.; Yoshino, K. Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Appl. Phys. Lett. 2009, 94, 123302.CrossRefGoogle Scholar
  17. [17]
    Zhao. B.; Zhang, L.; Liang, Y. X.; Qiu, H. X.; Yang, J. H. Efficient growth of millimeter-long few-walled carbon nanotube forests and their oil sorption. Appl. Phys. A 2012, 108, 351–355.CrossRefGoogle Scholar
  18. [18]
    Qian, C.; Qi, H.; Gao, B.; Cheng, Y.; Qiu, Q.; Qin, L. C.; Zhou, O.; Liu, J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J. Nanosci. Nanotechnol. 2006, 6, 1346–1349.CrossRefGoogle Scholar
  19. [19]
    Kumar, N. A.; Jeon, I. Y.; Sohn, G. J.; Jain, R.; Kumar, S.; Baek, J. B. Sponge behaviors of functionalized few-walled carbon nanotubes. ACS Nano 2011, 5, 2324–2331.CrossRefGoogle Scholar
  20. [20]
    Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.CrossRefGoogle Scholar
  21. [21]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47.CrossRefGoogle Scholar
  22. [22]
    Hilding, J.; Grulke, E. A.; Zhang, Z. G.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Disper. Sci. Technol. 2003, 24, 1–41.CrossRefGoogle Scholar
  23. [23]
    Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.CrossRefGoogle Scholar
  24. [24]
    Hou, Y.; Tang, J.; Zhang, H. B.; Qian, C.; Feng, Y. Y.; Liu, J. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 2009, 3, 1057–1062.CrossRefGoogle Scholar
  25. [25]
    Numata, H.; Ihara, K.; Saito, T.; Endoh, H.; Nihey, F. Electrical property of printed transistors fabricated with various types of carbon nanotube ink. In 2012 12th IEEE International Conference on Nanotechnology, Birmingham, UK, August 20–23, 2012; IEEE: Danvers, MA, 2012.CrossRefGoogle Scholar
  26. [26]
    Feng, Y.; Zhang, H.; Hou, Y.; McNicholas, T. P.; Yuan, D.; Yang, S.; Ding, L.; Feng, W.; Liu, J. Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2008, 2, 1634–1638.CrossRefGoogle Scholar
  27. [27]
    Panchakarla, L S.; Govindaraj, A. Covalent and non-covalent functionalization and solubilization of double-walled carbon nanotubes in nonpolar and aqueous media. J. Chem. Sci. 2008, 120, 607–611.CrossRefGoogle Scholar
  28. [28]
    Yudianti, R.; Onggo, H.; Sudirman; Saito, Y.; Iwata, T.; Azuma, J. I. Analysis of functional group sited on multiwall carbon nanotube surface. Open Mater. Sci. J. 2011, 5, 242–247.CrossRefGoogle Scholar
  29. [29]
    White, B.; Banerjee, S.; O’Brien, S.; Turro, N. J.; Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 13684–13690.CrossRefGoogle Scholar
  30. [30]
    Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.CrossRefGoogle Scholar
  31. [31]
    Lee, B. J.; Shin, E. C.; Jeong, G. H. Length-controlled fewwalled carbon nanotubes and their effect on the electrical property of flexible transparent conductive films. Appl. Phys. A 2012, 107, 843–848.CrossRefGoogle Scholar
  32. [32]
    Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem. Mater. 2006, 18, 5691–5695.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Colin Preston
    • 1
  • Da Song
    • 1
  • Jaiqi Dai
    • 1
  • Zois Tsinas
    • 2
  • John Bavier
    • 3
  • John Cumings
    • 1
  • Vince Ballarotto
    • 3
  • Liangbing Hu
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Maryland College ParkMarylandUSA
  2. 2.Department of BioengineeringUniversity of Maryland College ParkMarylandUSA
  3. 3.Laboratory for Physical SciencesCollege ParkUSA

Personalised recommendations