Nano Research

, Volume 8, Issue 7, pp 2231–2241 | Cite as

Localized magnetization reversal processes in cobalt nanorods with different aspect ratios

  • Marc Pousthomis
  • Evangelia Anagnostopoulou
  • Ioannis Panagiotopoulos
  • Rym Boubekri
  • Weiqing Fang
  • Frédéric Ott
  • Kahina Aït Atmane
  • Jean-Yves Piquemal
  • Lise-Marie Lacroix
  • Guillaume Viau
Research Article


We present results of the synthesis of cobalt nanorods using the polyol process and the mechanism of magnetization reversal. We show that the nucleation step is significantly dependent on the nature of the ruthenium chloride used as the nucleating agent. This allows varying the diameter and aspect ratio of the cobalt nanorods independently. Co nanorods with aspect ratio, mean diameter, and mean length in the ranges ARm = 3–16, D m = 7–25 nm, and L m = 30–300 nm, respectively, were produced using this method. X-ray diffraction and electron microscopy showed that a strong discrepancy between the structural coherence and morphological aspect ratio can exist because of stacking faults. The coercivity of assemblies of different nanorods was systematically measured, and the highest values were obtained for the smallest diameter and the largest structural coherence length. Micromagnetic simulations were performed to account for the dependence of the coercive field on the diameter. An important observation is that simple coherent magnetization rotation models do not apply to these magnetic nano-objects. Even for very small diameters (D m = 5–10 nm) well below the theoretical coherent diameter D coh(Co) = 24 nm, we observed inhomogeneous reversal modes dominated by nucleation at the rod edges or at structural defects such as stacking faults. We conclude that, in order to produce high-coercivity materials based on nanowires, moderate aspect ratios of 5–10 are sufficient for providing a structural coherence similar to the morphological aspect ratio. Thus, the first priority should be to avoid the formation of stacking faults within the Co nanowires.


nanorod nanowire permanent magnets micromagnetic calculations shape anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Krahne, R.; Morello, G.; Figuerola, A.; George, C.; Deka, S.; Manna, L. Physical properties of elongated inorganic nanoparticles. Phys. Rep. 2011, 501, 75–221.CrossRefGoogle Scholar
  2. [2]
    Liakakos, N.; Blon, T.; Achkar, C.; Vilar, V.; Cormary, B.; Tan, R. P.; Benamara, O.; Chaboussant, G.; Ott, F.; Warot-Fonrose, B. et al. Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 2014, 14, 3481–3486.CrossRefGoogle Scholar
  3. [3]
    Schrittwieser, S.; Ludwig, F.; Dieckhoff, J.; Soulantica, K.; Viau, G.; Lacroix, L. M.; Lentijo, S. M.; Boubekri, R.; Maynadié, J.; Huetten, A. et al. Modeling and development of a biosensor based on optical relaxation measurements of hybrid nanoparticles. ACS Nano 2012, 6, 791–801.CrossRefGoogle Scholar
  4. [4]
    Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501.CrossRefGoogle Scholar
  5. [5]
    Gandha, K.; Elkins, K.; Poudyal, N.; Liu, X. B.; Liu, J. P. High energy product developed from cobalt nanowires. Sci. Rep. 2014, 4, 5345.CrossRefGoogle Scholar
  6. [6]
    Harris, V. G.; Chen, Y.; Yang, A.; Yoon, S.; Chen, Z.; Geiler, A. L.; Gao, J.; Chinnasamy, C. N.; Lewis, L. H.; Vittoria, C. et al. High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material. J. Phys. D: Appl. Phys. 2010, 43, 165003.CrossRefGoogle Scholar
  7. [7]
    Poudyal, N.; Liu, J. P. Advances in nanostructured permanent magnets research. J. Phys. D: Appl. Phys. 2013, 46, 043001.CrossRefGoogle Scholar
  8. [8]
    Balasubramanian, B.; Mukherjee, P.; Skomski, R.; Manchanda, P.; Das, B.; Sellmyer, D. J. Magnetic nanostructuring and overcoming brown’s paradox to realize extraordinary hightemperature energy products. Sci. Rep. 2014, 4, 6265.CrossRefGoogle Scholar
  9. [9]
    Soumare, Y.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Fiévet, F.; Piquemal, J. Y.; Viau, G. Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv. Funct. Mater. 2009, 19, 1971–1977.CrossRefGoogle Scholar
  10. [10]
    Soulantica, K.; Wetz, F.; Maynadié, J.; Falqui, A.; Tan, R. P.; Blon, T.; Chaudret, B.; Respaud, M. Magnetism of singlecrystalline Co Nanorods. Appl. Phys. Lett. 2009, 95, 152504.CrossRefGoogle Scholar
  11. [11]
    Fang, W. Q.; Panagiotopoulos, I.; Ott, F.; Boué, F.; Ait-Atmane, K.; Piquemal, J. Y.; Viau, G.; Dalmas, F. Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets. J. Nanoparticle Res. 2014, 16, 2265.CrossRefGoogle Scholar
  12. [12]
    Skomski, R.; Zeng, H.; Zheng, M.; Sellmyer, D. J. Magnetic localization in transition-metal nanowires. Phys. Rev. B 2000, 62, 3900.CrossRefGoogle Scholar
  13. [13]
    Paulus, P. M.; Luis, F.; Kröll, M.; Schmid, G.; De Jongh, L. J. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 2001, 224, 180–196.CrossRefGoogle Scholar
  14. [14]
    Bran, C.; Ivanov, Y. P.; Trabada, D. G.; Tomkowicz, J.; del Real, R. P.; Chubykalo-Fesenko, O.; Vazquez, M. Structural dependence of magnetic properties in Co-based nanowires: Experiments and micromagnetic simulations. IEEE Trans. Magn. 2013, 49, 4491–4497.CrossRefGoogle Scholar
  15. [15]
    Schio, P.; Vidal, F.; Zheng, Y.; Milano, J.; Fonda, E.; Demaille, D.; Vodungbo, B.; Varalda, J.; de Oliveira, A. J. A.; Etgens, V. H. Magnetic response of cobalt nanowires with diameter below 5 nm. Phys. Rev. B 2010, 82, 094436.CrossRefGoogle Scholar
  16. [16]
    Ciuculescu, D.; Dumestre, F.; Comesaña-Hermo, M.; Chaudret, B.; Spasova, M.; Farle, M.; Amiens, C. Single-crystalline Co nanowires: Synthesis, thermal stability, and carbon coating. Chem. Mater. 2009, 21, 3987–3995.CrossRefGoogle Scholar
  17. [17]
    Liakakos, N.; Cormary, B.; Li, X.; Lecante, P.; Respaud, M.; Maron, L.; Falqui, A.; Genovese, A.; Vendier, L.; Koïnis, S. et al. The big impact of a small detail: Cobalt nanocrystal polymorphism as a result of precursor addition rate during stock solution preparation. J. Am. Chem. Soc. 2012, 134, 17922–17931.CrossRefGoogle Scholar
  18. [18]
    Atmane, K. A.; Michel, C.; Piquemal, J. Y.; Sautet, P.; Beaunier, P.; Giraud, M.; Sicard, M.; Nowak, S.; Losno, R.; Viau, G. Control of the anisotropic shape of cobalt nanorods in the liquid phase: From experiment to theory… and back. Nanoscale 2014, 6, 2682–2692.CrossRefGoogle Scholar
  19. [19]
    Viau, G.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Soumare, Y.; Piquemal, J. Y. Highly crystalline cobalt nanowires with high coercivity prepared by soft chemistry. Phys. Status Solidi A 2009, 206, 663–666.CrossRefGoogle Scholar
  20. [20]
    Aharoni, A. Introduction to the Theory of Ferromagnetism, 2nd ed.; Oxford University Press: London, 2000.Google Scholar
  21. [21]
    Ott, F.; Maurer, T.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Effects of the shape of elongated magnetic particles on the coercive field. J. Appl. Phys. 2009, 105, 013915.CrossRefGoogle Scholar
  22. [22]
    Panagiotopoulos, I.; Fang, W.; Aït-Atmane, K.; Piquemal, J. Y.; Viau, G.; Dalmas, F.; Boué, F.; Ott, F. Low dipolar interactions in dense aggregates of aligned magnetic nanowires. J. Appl. Phys. 2013, 114, 233909.Google Scholar
  23. [23]
    Vidal, F.; Zheng, Y.; Schio, P.; Bonilla, F. J.; Barturen, M.; Milano, J.; Demaille, D.; Fonda, E.; de Oliveira, A. J. A.; Etgens, V. H. Mechanism of localization of the magnetization reversal in 3 nm wide Co nanowires. Phys. Rev. Lett. 2012, 109, 117205.CrossRefGoogle Scholar
  24. [24]
    Panagiotopoulos, I.; Fang, W.; Ott, F.; Boué, F.; Aït-Atmane, K.; Piquemal, J. Y.; Viau, G. Packing fraction dependence of the coercivity and the energy product in nanowire based permanent magnets. J. Appl. Phys. 2013, 114, 143902.Google Scholar
  25. [25]
    Rueff, J. M.; Masciocchi, N.; Rabu, P.; Sironi, A.; Skoulios, A. Synthesis, structure and magnetism of homologous series of polycrystalline cobalt alkane mono-and dicarboxylate Soaps. Chem.—Eur. J. 2002, 8, 1813–1820.CrossRefGoogle Scholar
  26. [26]
    Chakroune, N.; Viau, G.; Ricolleau, C.; Fiévet-Vincent, F.; Fiévet, F. Cobalt-based anisotropic particles prepared by the polyol process. J. Mater. Chem. 2003, 13, 312–318.CrossRefGoogle Scholar
  27. [27]
    Gandha, K.; Poudyal, N.; Zhang, Q.; Liu, J. P. Effect of RuCl3 on morphology and magnetic properties of CoNi nanowires. IEEE Trans. Magn. 2013, 49, 3273–3276.CrossRefGoogle Scholar
  28. [28]
    Maurer, T.; Zighem, F.; Ott, F.; Chaboussant, G.; André, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G.; Gatel, C. Exchange bias in Co/CoO core-shell nanowires: Role of antiferromagnetic superparamagnetic fluctuations. Phys. Rev. B 2009, 80, 064427.CrossRefGoogle Scholar
  29. [29]
    Zeng, H.; Skomski, R.; Menon, L.; Liu, Y.; Bandyopadhyay, S.; Sellmyer, D. J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 2002, 65, 134426.CrossRefGoogle Scholar
  30. [30]
    Skomski, R.; Coey, J. M. D. Permanent Magnetism; Institute of Physics Pub.: Bristol, UK, and Philadelphia, PA, 1999.Google Scholar
  31. [31]
    Fischbacher, T.; Franchin, M.; Bordignon, G.; Fangohr, H. A systematic approach to multiphysics extensions of finiteelement-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 2007, 43, 2896–2898.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marc Pousthomis
    • 1
  • Evangelia Anagnostopoulou
    • 1
  • Ioannis Panagiotopoulos
    • 2
    • 3
  • Rym Boubekri
    • 1
  • Weiqing Fang
    • 2
  • Frédéric Ott
    • 2
  • Kahina Aït Atmane
    • 4
  • Jean-Yves Piquemal
    • 4
  • Lise-Marie Lacroix
    • 1
  • Guillaume Viau
    • 1
  1. 1.LPCNO, UMR 5215 INSA CNRS UPSUniversité de ToulouseToulouse Cedex 4France
  2. 2.Laboratoire Léon Brillouin, CEA/CNRS UMR12, IRAMISCEA-SaclayGif sur YvetteFrance
  3. 3.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  4. 4.Sorbonne Paris Cité, ITODYS, CNRS UMR 7086Université Paris DiderotParis Cedex 13France

Personalised recommendations