Nano Research

, Volume 8, Issue 7, pp 2199–2205 | Cite as

Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures

  • Pauline Vitry
  • Eric Bourillot
  • Cédric Plassard
  • Yvon Lacroute
  • Eric Calkins
  • Laurene Tetard
  • Eric Lesniewska
Research Article


Challenges in nanoscale characterization call for non-invasive, yet sensitive subsurface characterization of low-density materials such as polymers. In this work, we present new evidence that mode-synthesizing atomic force microscopy can be used to detect minute changes in low-density materials, such as those engendered in electro-sensitive polymers during electron beam lithography, surpassing all common nanoscale mechanical techniques.

Moreover, we propose 3D reconstruction of the exposed polymer regions using successive high-resolution frames acquired at incremental depths inside the sample. In addition, the results clearly show the influence of increasing dwell time on the depth profile of the nano-sized exposed regions. Hence, the simple approach described here can be used for achieving sensitive nanoscale tomography of soft materials with promising applications in material sciences and biology.


nanoscale subsurface imaging atomic force microscopy 3D reconstruction nanoscale tomography acoustic microscopy dielectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Garcia, R.; Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. nanotechnol. 2012, 7, 217–226.CrossRefGoogle Scholar
  2. [2]
    Plassard, C.; Bourillot, E.; Rossignol, J.; Lacroute, Y.; Lepleux, E.; Pacheco, L.; Lesniewska, E. Detection of defects buried in metallic samples by scanning microwave microscopy. Phys. Rev. B 2011, 83, 121409.CrossRefGoogle Scholar
  3. [3]
    Cuberes, M. T. Intermittent-contact heterodyne force microscopy. J. Nanomater. 2009, 8, 762016.Google Scholar
  4. [4]
    Shekhawat, G. S.; Dravid, V. P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 2005, 310, 89–92.CrossRefGoogle Scholar
  5. [5]
    Shekhawat, G. S.; Avasthy, S.; Srivastava, A. K.; Tark, S.-H.; Dravid, V. P. Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE T. Nanotechnol. 2010, 9, 671–674.CrossRefGoogle Scholar
  6. [6]
    Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. nanotechnol. 2008, 3, 501–505.CrossRefGoogle Scholar
  7. [7]
    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E. From surface to intracellular non-invasive nanoscale study of living cells impairments. Nanotechnology 2014, 25, 295101.CrossRefGoogle Scholar
  8. [8]
    Burnham, N. A.; Kulik, A. J.; Gremaud, G.; Gallo, P.-J.; Oulevey, F. Scanning local-acceleration microscopy. J. Vac. Sci. Technol. B 1996, 14, 794–799.CrossRefGoogle Scholar
  9. [9]
    Fukuma, T.; Kobayashi, K.; Matsushige, K.; Yamada, H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 2005, 87, 034101.CrossRefGoogle Scholar
  10. [10]
    Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493–1495.CrossRefGoogle Scholar
  11. [11]
    Verbiest, G. J.; Simon, J. N.; Oosterkamp, T. H.; Rost, M. J. Subsurface atomic force microscopy: Towards a quantitative understanding. Nanotechnology 2012, 23, 145704.Google Scholar
  12. [12]
    Kolosov, O. V.; Castell, M. R.; Marsh, C. D.; Briggs, G. A. D.; Kamins, T. I.; Williams, R. S. Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 1998, 81, 1046.CrossRefGoogle Scholar
  13. [13]
    Passian, A.; Thundat, T.; Tetard, L. Mode synthesizing atomic force microscopy and mode-synthesizing sensing. U.S. Patent 12/726,083, Mar. 17, 2010.Google Scholar
  14. [14]
    Tetard, L.; Passian, A.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V.; Thundat, T. Elastic phase response of silica nanoparticles buried in soft matter. Appl. Phys. Lett. 2008, 93, 133113.CrossRefGoogle Scholar
  15. [15]
    Ngwa, W.; Luo, W.; Kamanyi, A.; Fomba, K. W.; Grill, W. Characterization of polymer thin films by phase-sensitive acoustic microscopy and atomic force microscopy: A comparative review. J. Microsc. 2005, 218, 208–218.CrossRefGoogle Scholar
  16. [16]
    Passeri, D.; Rossi, M.; Alippi, A.; Bettucci, A.; Terranova, M. L.; Tamburri, E.; Toschi, F. Characterization of epoxy/ single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 2008, 40, 2419–2424.CrossRefGoogle Scholar
  17. [17]
    Crozier, K. B.; Yaralioglu, G. G.; Degertekin, F. L.; Adams, J. D.; Minne, S. C.; Quate, C. F. Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 2000, 76, 1950–1952.CrossRefGoogle Scholar
  18. [18]
    Rose, J. L. A baseline and vision of ultrasonic guided wave inspection potential. J. Pressure Vessel Technol. 2002, 124, 273–282.CrossRefGoogle Scholar
  19. [19]
    Tsuji, T.; Yamanaka, K. Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 2001, 12, 301.CrossRefGoogle Scholar
  20. [20]
    Yamanaka, K.; Ogiso, H.; Kolosov, O. Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 1994, 64, 178–180.CrossRefGoogle Scholar
  21. [21]
    Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 1975, 53, 314–326.CrossRefGoogle Scholar
  22. [22]
    Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pauline Vitry
    • 1
  • Eric Bourillot
    • 1
  • Cédric Plassard
    • 1
  • Yvon Lacroute
    • 1
  • Eric Calkins
    • 2
    • 3
  • Laurene Tetard
    • 2
    • 3
  • Eric Lesniewska
    • 1
  1. 1.Physics DepartmentUniversity of BourgogneCedexFrance
  2. 2.Nanoscience Technology CenterUniversity of Central FloridaOrlandoUSA
  3. 3.Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations