Advertisement

Uniform single-layer graphene growth on recyclable tungsten foils

  • 555 Accesses

  • 9 Citations

Abstract

To meet the rising demand of graphene in electronics and optoelectronics, developing an efficient synthesis strategy for effective control of the layer thickness is highly necessary. Herein, we report the synthesis of strictly single-layer graphene on the foil of an early transition metal, tungsten (W), via a simple chemical vapor deposition route. The cracking of hydrocarbons is facilitated by the catalytically active metal surface of W, while the subsequent two-dimensional growth is mediated by the carbide-forming ability within the underlying bulk, leading to the formation of uniform monolayer graphene. The as-grown graphene layers can be transferred onto target substrates rapidly through the recently developed electrochemical method, which also allows for reuse of the substrates at least five times without introducing quality deterioration. Moreover, considering the refractory nature of W foils, a complementary component of nickel is added, by means of which the growth temperature of graphene can be significantly reduced. In brief, a highly-efficient and low-cost synthesis route has been developed for the growth of graphene towards large-area uniformity, single-layer thickness and high crystalline quality.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

  2. [2]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

  3. [3]

    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

  4. [4]

    Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589.

  5. [5]

    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

  6. [6]

    Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.

  7. [7]

    Iwasaki, T.; Park, H. J.; Konuma, M.; Lee, D. S.; Smet, J. H.; Starke, U. Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett. 2011, 11, 79–84.

  8. [8]

    Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y. F.; Liao, L.; Liu, Z. F. Segregation growth of graphene on Cu-Ni alloy for precise layer control. J. Phys. Chem. C 2011, 115, 11976–11982.

  9. [9]

    Weatherup, R. S.; Bayer, B. C.; Blume, R.; Ducati, C.; Baehtz, C.; Schloegl, R.; Hofmann, S. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 2011, 11, 4154–4160.

  10. [10]

    Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522–527.

  11. [11]

    Lee, S.; Lee, K.; Zhong, Z. H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010, 10, 4702–4707.

  12. [12]

    Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106–1110.

  13. [13]

    Liu, L.; Zhou, H.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

  14. [14]

    Sun, Z. Z.; Raji, A.-R. O.; Zhu, Y.; Xiang, C. S.; Yan, Z.; Kittrel, C.; Samuel, E. L. G.; Tour, J. M. Large-area bernal-stacked bi-, tri-, and tetralayer graphene. ACS Nano 2012, 6, 9790–9796.

  15. [15]

    Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832–3839.

  16. [16]

    Katoh, M.; Kawarada, H. Heteroepitaxial growth of tungsten carbide films on W(110) by plasma-enhanced chemical-vapor-deposition. Jpn. J. Appl. Phys. 1995, 34, 3628–3630.

  17. [17]

    Stefan, P. M.; Shek, M. L.; Lindau, I.; Spicer, W. E.; Johansson, L. I.; Herman, F.; Kasowski, R. V.; Brogen, G. Photoemission study of WC(0001). Phys. Rev. B 1984, 29, 5423–5444.

  18. [18]

    Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.

  19. [19]

    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699–705.

  20. [20]

    Cancado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

  21. [21]

    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

  22. [22]

    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93.

  23. [23]

    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

  24. [24]

    Kimmel, Y. C.; Esposito, D. V.; Birkmire, R. W.; Chen, J. G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Inter. J. Hydrogen Energy 2012, 37, 3019–3024.

  25. [25]

    Yan, Y.; Xia, B.; Qi, X.; Wang, H.; Xu, R.; Wang, J.-Y.; Zhang, H.; Wang, X. Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. Chem. Commun. 2013, 49, 4884–4886.

  26. [26]

    Dai, Y. N. Binary Alloy Phase Diagrams; Science Press of China: Beijing, 2009.

Download references

Author information

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Song, X., Chen, K. et al. Uniform single-layer graphene growth on recyclable tungsten foils. Nano Res. 8, 592–599 (2015) doi:10.1007/s12274-015-0727-9

Download citation

Keywords

  • graphene
  • chemical vapor deposition
  • single layer
  • tungsten
  • carbide
  • recyclable substrate