Nano Research

, Volume 8, Issue 6, pp 2047–2062 | Cite as

Organic coating of 1–2-nm-size silicon nanoparticles: Effect on particle properties

  • Cristian R. Lillo
  • Juan J. Romero
  • Manuel Llansola Portolés
  • Reinaldo Pis Diez
  • Paula Caregnato
  • Mónica C. Gonzalez
Research Article

Abstract

Photoluminescent silicon nanoparticles 1–2 nm in size were synthesized by a wet chemical procedure and derivatized with propylamine (NH2SiNP). Surface NH2 groups were used as linkers for additional poly(ethylene glycol) (PEG) and folic acid (Fo) attachment (PEG-NHSiNP and Fo-NHSiNP, respectively) to enable efficient targeting of the particles to tumors and inflammatory sites. The particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ζ potential, dynamic light scattering, and time-resolved anisotropy.

The photophysical properties and photosensitizing capacity of the particles and their interaction with proteins was dependent on the nature of the attached molecules. While PEG attachment did not alter the photophysical behavior of NH2SiNP, the attachment of Fo diminished particle photoluminescence. Particles retained the capacity for 1O2 generation; however, efficient 1O2 quenching by the attached surface groups may be a drawback when using these particles as 1O2 photosensitizers. In addition, Fo attachment provided particles with the capacity to generate the superoxide anion radical (O2).

The particles were able to bind tryptophan residues of bovine serum albumin (BSA) within quenching distances. NH2SiNP and PEG–NHSiNP ground state complexes with BSA showed binding constants of (3.1 ± 0.3) × 104 and (1.3 ± 0.4) × 103 M−1, respectively. The lower value observed for PEG-NHSiNP complexes indicates that surface PEGylation leads to a reduction in protein adsorption, which is required to prevent opsonization. An increase in particle luminescence upon BSA binding was attributed to the hydrophobic environment generated by the protein. NH2SiNP-BSA complexes were also capable of resonance energy transfer.

Keywords

propylamine folic acid poly(ethylene glycol) photoluminescence protein-binding singlet oxygen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Llansola Portolés, M. J.; David Gara, P. M.; Kotler, M. L.; Bertolotti, S.; San Román, E.; Rodríguez, H. B.; Gonzalez, M. C. Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir 2010, 26, 10953–10960.CrossRefGoogle Scholar
  2. [2].
    Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefGoogle Scholar
  3. [3].
    Llansola Portolés, M. J.; Rodriguez Nieto, F.; Soria, D. B.; Amalvy, J. I.; Peruzzo, P. J.; Mártire, D. O.; Kotler, M.; Holub, O.; Gonzalez, M. C. Photophysical properties of blueemitting silicon nanoparticles. J. Phys. Chem. C 2009, 113, 13694–13702.CrossRefGoogle Scholar
  4. [4].
    Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383.CrossRefGoogle Scholar
  5. [5].
    Wang, C. H.; Liu, C. J.; Wang, C. L.; Huang, T. E.; Obliosca, J. M.; Lee, K. H.; Hwu, Y.; Yang, C. S.; Liu, R. S.; Lin, H. M. et al. Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intese X-ray irradiation. J. Phys. D: Appl. Phys. 2008, 41,195301.CrossRefGoogle Scholar
  6. [6].
    Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.Google Scholar
  7. [7].
    Paciotti, G. F.; Kingston, D. G. I.; Tamarkin, L. Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug. Develop. Res. 2006, 67, 47–54.CrossRefGoogle Scholar
  8. [8].
    David Gara, P.; Garabano, N.; Llansola Portoles, M.; Moreno, M. S.; Dodat, D.; Casas, O.; Gonzalez, M.; Kotler, M. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J. Nanopart. Res. 2012, 14,741.CrossRefGoogle Scholar
  9. [9].
    Klein, S.; Dell’Arciprete, M. L.; Wegmann, M.; Distel, L. V. R.; Neuhuber, W.; Gonzalez, M. C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Bioph. Res. Commun. 2013, 434, 217–222.CrossRefGoogle Scholar
  10. [10].
    Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acidconjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240–250.CrossRefGoogle Scholar
  11. [11].
    Lu, Y. J.; Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliver. Rev. 2002, 54, 675–693.CrossRefGoogle Scholar
  12. [12].
    Romero, J. J.; Llansola Portolés, M. J.; Dell’Arciprete, M. L.; Rodríguez, H. B.; Moore, A. L.; Gonzalez, M. C. Photoluminescent 1–2 nm sized silicon nanoparticles: A surface-dependent system. Chem. Mater. 2013, 25, 3488–3498.CrossRefGoogle Scholar
  13. [13].
    Bhattacharjee, S.; Rietjens, I. M. C. M.; Singh, M. P.; Atkins, T. M.; Purkait, T. K.; Xu, Z. J.; Regli, S.; Shukaliak, A.; Clark, R. J.; Mitchell, B. S. et al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: The dominant role of surface charges. Nanoscale 2013, 5, 4870–4883.CrossRefGoogle Scholar
  14. [14].
    Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.CrossRefGoogle Scholar
  15. [15].
    Erogbogbo, F.; Tien, C. A.; Chang, C. W.; Yong, K. T.; Law, W. C.; Ding, H.; Roy, I.; Swihart, M. T.; Prasad, P. N. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem. 2011, 22, 1081–1088.CrossRefGoogle Scholar
  16. [16].
    Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater. 2009, 19, 3843–3854.CrossRefGoogle Scholar
  17. [17].
    Ausubel, F. M.; Brent, R.; Kingston, R. E.; Seidman, J. G.; Smith, J. A.; Struhl, K. Current Protocols in Molecular Biology. John Wiley & Sons: New York, 2003.Google Scholar
  18. [18].
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer Science+Business Media: New York, 2006.CrossRefGoogle Scholar
  19. [19].
    Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T.; Köhler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; Di Carlo, A.; Suhai, S. Atomistic simulations of complex materials: Groundstate and excited-state properties. J. Phys.: Condens. Matter 2002, 14, 3015–3047.Google Scholar
  20. [20].
    Steinbeck, M. J.; Khan, A. U.; Karnovsky, M. J. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film. J. Biol. Chem. 1993, 268, 15649–15654.Google Scholar
  21. [21].
    Llansola Portolés, M. J.; Pis Diez, R.; Dell’Arciprete, M. L.; Caregnato, P.; Romero, J. J.; Mártire, D. O.; Azzaroni, O.; Ceolín, M.; Gonzalez, M. C. Understanding the parameters affecting the photoluminescence of silicon nanoparticles. J. Phys. Chem. C 2012, 116, 11315–11325.Google Scholar
  22. [22].
    Warner, J. H.; Hoshino, A.; Yamamoto, K.; Tilley, R. D. Water-soluble photoluminescent silicon quantum dots. Angew. Chem. 2005, 117, 4626–4630.CrossRefGoogle Scholar
  23. [23].
    Atkins, T. M.; Louie, A. Y.; Kauzlarich, S. M. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles. Nanotechnology 2012, 23, 294006.CrossRefGoogle Scholar
  24. [24].
    Hua, F. J.; Swihart, M. T.; Ruckenstein, E. Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 2005, 21, 6054–6062.CrossRefGoogle Scholar
  25. [25].
    Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.CrossRefGoogle Scholar
  26. [26].
    Aradi, B.; Hourahine, B.; Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 2007, 111, 5678–5684.CrossRefGoogle Scholar
  27. [27].
    Rosso-Vasic, M.; Spruijt, E.; van Lagen, B.; De Cola, L.; Zuilhof, H. Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 2008, 4, 1835–1841.CrossRefGoogle Scholar
  28. [28].
    Wilcoxon, J. P.; Samara, G. A.; Provencio, P. N. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 1999, 60, 2704–2714.CrossRefGoogle Scholar
  29. [29].
    Wahab, M. A.; Kim, I.; Ha, C. S. Bridged aminefunctionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl)ethane and bis[(3-trimethoxysilyl) propyl]amine. J. Solid. State Chem. 2004, 177, 3439–3447.CrossRefGoogle Scholar
  30. [30].
    Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. Meyer, R. A., Ed. John Wiley & Sons Ltd: Chinchester, 2000; pp10815–10837.Google Scholar
  31. [31].
    Alexander, M. R.; Short, R. D.; Jones, F. R.; Michaeli, W.; Blomfield, C. J. A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: Curve fitting of the Si 2p core level. Appl. Surf. Sci. 1999, 137, 179–183.CrossRefGoogle Scholar
  32. [32].
    Hairdary, S. M.; Córcoles, E. P.; Ali, N. K. Folic acid delivery device based on porous silicon nanoparticles synthesized by electrochemical etching. Int. J. Electrochem. Sci. 2013, 8, 9956–9966.Google Scholar
  33. [33].
    Wu, Z. P.; Zuo, F.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X. A novel approach to molecular recognition surface of magnetic nanoparticles based on host–guest effect. Nanoscale Res. Lett. 2009, 4, 738–747.CrossRefGoogle Scholar
  34. [34].
    Mattoussi, S. H.; Cumming, A. W.; Murray, C. B.; Bawendi, M. G. Properties of CdSe nanocrystal dispersions in the dilute regime: Structure and interparticle interactions. Phys. Rev. B 1998, 58, 7850–7863.CrossRefGoogle Scholar
  35. [35].
    Smith, A.; Yamani, Z. H.; Roberts, N.; Turner, J.; Habbal, S. R.; Granick, S.; Nayfeh, M. H. Observation of strong directlike oscillator strength in the photoluminescence of Si nanoparticles. Phys. Rev. B 2005, 72, 205307.CrossRefGoogle Scholar
  36. [36].
    Xiao, L.; Gu, L.; Howell, S. B.; Sailor, M. J. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011, 5, 3651–3659.CrossRefGoogle Scholar
  37. [37].
    Timoshenko, V. Light-induced generation of singlet oxygen in porous silicon. In Sensors for Environment, Health and Security. Baraton, M. I., Ed. Springer: the Netherlands, 2009; pp125–139.CrossRefGoogle Scholar
  38. [38].
    Fumon, H; Nojiri, M.; Fujii, M. Hayashi, S.; Akamatsu, K. Sensitized generation of singlet oxygen by allylamineterminated hydrophillic porous Si. Trans. Mat. Res. Soc. Jpn. 2008, 33, 165–168.Google Scholar
  39. [39].
    Schweitzer, C.; Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1758.CrossRefGoogle Scholar
  40. [40].
    Wilkinson, F.; Helman, W. P.; Ross, A. B. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 1995, 24, 663–677.Google Scholar
  41. [41].
    Darmanyan, A. P.; Jenks, W. S.; Jardon, P. Charge-transfer quenching of singlet oxygen O2(1Δg) by amines and aromatic hydrocarbons. J. Phys. Chem. A 1998, 102, 7420–7426.CrossRefGoogle Scholar
  42. [42].
    Thomas, A. H.; Lorente, C.; Capparelli, A. L.; Martinez, C. G.; Braun, A. M.; Oliveros, E. Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions. Photochem. Photobio. Sci. 2003, 2, 245–250.CrossRefGoogle Scholar
  43. [43].
    Cabrerizo, F. M.; Laura Dántola, M.; Petroselli, G.; Capparelli, A. L.; Thomas, A. H.; Braun, A. M.; Lorente, C.; Oliveros, E. Reactivity of conjugated and unconjugated pterins with singlet oxygen (O2(1Δg)): Physical quenching and chemical reaction. Photochem. Photobiol. 2007, 83, 526–534.CrossRefGoogle Scholar
  44. [44].
    Alarcón, E.; Aspée, A.; Abuin, E. B.; Lissi, E. A. Evaluation of solute binding to proteins and intra-protein distances from steady state fluorescence measurements. J. Photochem. Photobiol. B 2012, 106, 1–17.CrossRefGoogle Scholar
  45. [45].
    Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L.; Mahmoundi, M. Protein–Nanoparticle Interactions—The Bio-Nano Interface; Springer-Verlag Berlin Heidelberg: Berlin, 2013.Google Scholar
  46. [46].
    Ying, P. Q.; Jin, G.; Tao, Z. L. Competitive adsorption of collagen and bovine serum albumin—Effect of the surface wettability. Colloid. Surf. B 2004, 33, 259–263.CrossRefGoogle Scholar
  47. [47].
    Lynch, I.; Dawson, K. A. Protein–nanoparticle interactions. Nano Today 2008, 3, 40–47.CrossRefGoogle Scholar
  48. [48].
    Chatterjee, S.; Mukherjee, T. K. Spectroscopic investigation of interaction between bovine serum albumin and aminefunctionalized silicon quantum dots. Phys. Chem. Chem. Phys. 2014, 16, 8400–8408.CrossRefGoogle Scholar
  49. [49].
    Valeur, B. Resonance energy transfer and its applications. In Molecular Fluorescence: Principles and Applications. Valeur, B., Ed.; Wiley-VCH Verlag GmbH: Weinhelm, 2001; pp247–272.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cristian R. Lillo
    • 1
  • Juan J. Romero
    • 1
  • Manuel Llansola Portolés
    • 1
  • Reinaldo Pis Diez
    • 2
  • Paula Caregnato
    • 1
  • Mónica C. Gonzalez
    • 1
  1. 1.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Facultad de CienciasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.CEQUINOR, CCT-La Plata-CONICET, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Department of Chemistry and Biochemistry, Center for Bioenergy and PhotosynthesisArizona State UniversityTempeUSA

Personalised recommendations