Advertisement

Nano Research

, Volume 8, Issue 6, pp 1771–1799 | Cite as

How toxic are gold nanoparticles? The state-of-the-art

  • Ilaria FratoddiEmail author
  • Iole Venditti
  • Cesare Cametti
  • Maria Vittoria Russo
Review Article

Abstract

With the growing interest in the applications of gold nanoparticles in biotechnology and their physiological effects, possible toxicity of gold nanoparticles is becoming an increasingly important issue. A large number of studies carried out over the past few years under a variety of experimental conditions and following different protocols have produced conflicting results, leading to divergent views about the actual safety of gold nanoparticles in human applications.

This work is intended to provide an overview of the most recent experimental results and thereby summarize current state-of-the-art. Rather than presenting a comprehensive review of the available literature in this field, which would be impractically broad, we have selected representative examples of both in vivo and in vitro studies, which clearly demonstrate the need for urgent and rigorous standardization of experimental protocols. Despite their significant potential, the safety of gold nanoparticles is highly controversial at this time, and important concerns have been raised that need to be properly addressed. Factors such as shape, size, surface charge, coating, and surface functionalization are expected to influence the interactions of particles with biological systems to a different extent, resulting in different outcomes and influencing the potential of gold nanoparticles for biomedical applications.

Moreover, despite continuous attempts to establish a correlation between structure of the particles and their interactions with biological systems, we are still far from elucidating the toxicological profile of gold nanoparticles in an indisputable manner. This review is intended to contribute towards this goal, offering a number of suggestions on how to achieve the systematization of data on the most relevant physico-chemical parameters, which govern and control the toxicity of gold nanoparticles at cellular and whole-organism levels.

Keywords

gold nanoparticles nanospheres nanorods nanocages nanostars toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Timbrell, J. A. Biomarkers in toxicology. Toxicology 1998, 129, 1–12.Google Scholar
  2. [2]
    Schmid, O.; Möller, W.; Semmler-Behnke, M.; Ferron, G. A.; Karg, E.; Lipka, J.; Schulz, H.; Kreyling, W. G.; Stoeger, T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2009, 14, 67–73.Google Scholar
  3. [3]
    Grass, R. N.; Limbach, L. K.; Athanassiou, E. K.; Stark, W. J. Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: A review on the dose relevance of size, mass, surface and concentration. J. Aerosol Sci. 2010, 41, 1123–1142.Google Scholar
  4. [4]
    Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug. Delivery Rev. 2008, 60, 1307–1315.Google Scholar
  5. [5]
    Eck, W.; Nicholson, A. I.; Zentgraf, H.; Semler, W.; Bartling S. N. Anti-cd4-targeted gold nanoparticles induce specific contrast enhancement on peripheral lymphonodes in x-ray computed tomography in live mice. Nano Lett. 2010, 10, 2318–2322.Google Scholar
  6. [6]
    Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug. Delivery Rev. 2008, 60, 1289–1306.Google Scholar
  7. [7]
    Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.Google Scholar
  8. [8]
    Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.Google Scholar
  9. [9]
    Patra, H. K.; Banerjee, S.; Chaudhuri, U.; Lahiri, P.; Dasgupta, A. K. Cell selective response to gold nanoparticles. Nanomedicine 2007, 3, 111–119.Google Scholar
  10. [10]
    Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyad, R.; Kuten, R.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673.Google Scholar
  11. [11]
    Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.Google Scholar
  12. [12]
    Zhang, X. D.; Guo, M. L.; Wu, H. Y.; Sun, Y. M.; Ding, Y. Q.; Feng, X.; Zhang, L. A. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int. J. Nanomedicine 2009, 4, 165–173.Google Scholar
  13. [13]
    Sung, J. H.; Ji, J. H.; Park, J. D.; Song, M. Y.; Song, K. S.; Ryu, H. R.; Yoon, J. U.; Jeon, K. S.; Jeong, J.; Han, B. S. et al. Subchronic inhalation toxicity of gold nanoparticles. Part. Fibre Toxicol. 2011, 8, 16.Google Scholar
  14. [14]
    Villiers, C. L.; Freitas, H.; Couderc, R.; Villiers, M. B.; Marche, P. N. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions. J. Nanopart. Res. 2010, 12, 55–60.Google Scholar
  15. [15]
    Sabella, S.; Galeone, A.; Vecchio, G.; Cingolani, R.; Pompa, P. P. AuNPs are toxic in vitro and in vivo: A review. J. Nanosci. Lett. 2011, 1, 145–165.Google Scholar
  16. [16]
    Wang, S.; Lawson, R.; Ray, P. C.; Yu, H. Toxic effects of gold nanoparticles on salmonella typhimurium bacteria. Toxicol. Ind. Health 2011, 27, 0748233710393395.Google Scholar
  17. [17]
    Zhou, M.; Wang, B. X.; Rozynek, Z.; Xie, Z.; H. Fossum, J. O.; Yu, X. F.; Raaen, S. Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 2009, 20, 505606.Google Scholar
  18. [18]
    Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A. A.; Natale, C.; Santacroce, R.; Di Corcia, M. G.; Lucchese, A.; Dini, L. et al. Cell death: Apoptosis versus necrosis (review). Int. J. Oncol. 2002, 21, 165–170.Google Scholar
  19. [19]
    Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Maiorano, G.; Sabella, S.; Cingolani, R. Physical assessment of toxicology at nanoscale: Nano dose-metrics and toxicity factor. Nanoscale 2011, 3, 2889–2897.Google Scholar
  20. [20]
    Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.Google Scholar
  21. [21]
    Yah, C. S. The toxicity of gold nanoparticles in relation to their physicochemical properties. Biomed. Res. 2013, 24, 400–413.Google Scholar
  22. [22]
    Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmon properties. Chem. Soc. Rev. 2013, 42, 2679–2724.Google Scholar
  23. [23]
    Aillon, K. L.; Xie, Y.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Delivery Rev. 2009, 61, 457–466.Google Scholar
  24. [24]
    Khlebtsov, N; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.Google Scholar
  25. [25]
    Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.Google Scholar
  26. [26]
    Pelley, J. L.; Daar, A. S.; Saner, M. A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci. 2009, 112, kfp188.Google Scholar
  27. [27]
    Maurer-Jones, M. A.; Bantz, K. C.; Love, S. A.; Marquis, B. J.; Haynes, C. L. Toxicity of therapeutic nanoparticles. Nanomedicine 2009, 4, 219–241.Google Scholar
  28. [28]
    Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, K. O.; Yu, R. C.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges. Adv. Mater. 2009, 21, 1549–1559.Google Scholar
  29. [29]
    Fadeel B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Delivery Rev. 2010, 62, 362–374.Google Scholar
  30. [30]
    Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold nanoparticles: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346.Google Scholar
  31. [31]
    Soenen, S. J.; Rivera-Gil, P.; Montenegro, J. M.; Parak, W. J.; De Smedt, S. C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465.Google Scholar
  32. [32]
    Rausch, K.; Reuter, A.; Fischer, K.; Schmidt, M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 2010, 11, 2836–2839.Google Scholar
  33. [33]
    Cui, W. J.; Li, J. R.; Zhang, Y. K.; Rong, H. L.; Lu, W. S.; Jiang, L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine: NBM 2012, 8, 46–53.Google Scholar
  34. [34]
    Pan, Y.; Neuss, S.; Leifert, A.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.Google Scholar
  35. [35]
    Fratoddi, I.; Venditti, I.; Cametti, C.; Palocci, C.; Chronopoulou, L.; Marino, M.; Acconcia, F.; Russo, M. V. Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf., B 2012, 93, 59–66.Google Scholar
  36. [36]
    Shukla, S.; Priscilla, A.; Banerjee, M.; Bhonde, R. R.; Ghatak, J.; Satyam, P. V. Porous gold nanospheres by controlled transmetalation reaction: A novel material for application in cell imaging. Chem. Mater. 2005, 17, 5000–5005.Google Scholar
  37. [37]
    Railsback, J. G.; Singh, A.; Pearce, R. C.; McNight, T. E.; Collazo, R.; Sitar, Z.; Yingling, Y. G.; Melechko, A. V. Weakly charged cationic nanoparticles induce DNA bending and strand separation. Adv. Mater. 2012, 24, 4261–4265.Google Scholar
  38. [38]
    Paillusson, F.; Dahirel, V.; Jardat, M.; Victor, J. M.; Barbo, M. Effective interaction between charged nanoparticles and DNA. Phys. Chem. Chem. Phys. 2011, 13, 12603–12613.Google Scholar
  39. [39]
    Poulos, A. S.; Constantin, D.; Davidson, P.; Impéror-Clerc, M.; Pansu, B.; Rouzière, S. The interaction of charged nanoparticles at interfaces. EPL 2012, 100, 18002.Google Scholar
  40. [40]
    Huang, X. L.; Zhang, B.; Ren, L.; Ye, S. F.; Sun, L. P.; Zhang, Q. Q.; Tan, N. C.; Chow, G. M. In vivo toxic studies and biodistribution of near infrared sensitive Au-AuS nanoparticles as potential drug delivery carriers. J. Mat. Sci.: Mater. Med. 2008, 19, 2581–2588.Google Scholar
  41. [41]
    Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M. Gold nanoparticles: A new x-ray contrast agent. Br. J. Radiol. 2006. 79, 248–253Google Scholar
  42. [42]
    Gerber, A.; Bundschud, M.; Klingelhofer, D.; Groneberg, D. A. Gold nanoparticles: Recent aspects for human toxicology. J. Occup. Med. Toxicol. 2013, 8, 32.Google Scholar
  43. [43]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.Google Scholar
  44. [44]
    Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J. Mater. Chem. B 2014, 2, 4204–4220.Google Scholar
  45. [45]
    Fratoddi, I.; Panziera, N.; Pertici, P.; Martra, G.; Bertinetti, L.; Russo, M. V. Nanostructured gold/conjugated polymer hybrids: Preparation, chemical structure and morphology. Mater. Sci. Engin., C 2007, 27, 1305–1308.Google Scholar
  46. [46]
    Vitale, F.; Piscopiello, E.; Pellegrini, G.; Fratoddi, I.; Russo, M. V.; Tapfer, L.; Mazzoldi, P. Gold nanoclusters-organometallic polymer nanocomposite: Synthesis and characterization. Mater. Sci. Engin,. C 2007, 27, 1300–1304.Google Scholar
  47. [47]
    Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Piscopiello, E.; Tapfer, L.; Russo, M. V. Synthesis and characterization of gold nanoparticles stabilized by palladium (II) phosphine thiol. J. Organomet. Chem. 2008, 693, 1043–1048.Google Scholar
  48. [48]
    Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Giannini, C.; Piscopiello, E.; Guagliardi, A.; Cervellino, A.; Polzonetti, G.; Russo, M. V. et al. Synthesis and microstructural investigations of organometallic Pd(II) thiol-gold nano-particles. Nanoscale Res. Lett. 2008, 3, 461–467.Google Scholar
  49. [49]
    Fratoddi, I.; Venditti, I.; Russo, M. V. Breackthroughs for gold nanoparticles:, volume chap. 13. Nova Science Publisher, Inc. NY, 2010. ISBN: 978-1-61668-009-1.Google Scholar
  50. [50]
    Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M. V. Core-shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 98.Google Scholar
  51. [51]
    Cametti, C.; Fratoddi, I.; Venditti, I.; Russo, M. V. Dielectric relaxations of thiol-coated noble metal nanoparticles in aqueous solutions. electrical characterization of the interface. Langmuir, 2011, 27, 7084–7090.Google Scholar
  52. [52]
    Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Bondino, F.; Malvestuto, M.; Piscopiello, E.; Tapfer, L.; Russo, M. V. Gold nanoparticle dyads stabilized with binuclear Pt(II) dithiol bridges. J. Phys. Chem. C 2011, 115, 15198–15204.Google Scholar
  53. [53]
    Fratoddi, I.; Battocchio, C.; Polzonetti, G.; Sciubba, F.; Delfini, M.; Russo, M. V. A porphyrin bridged Pd dimer complex stabilizes gold nanoparticles. Eur. J. Inorg. Chem. 2011, 4906–4913.Google Scholar
  54. [54]
    Quintiliani, M.; Bassetti, M.; Pasquini, C.; Battocchio, C.; Possi, M.; Mura, F.; Matassa, R.; Fontana, L.; Russo, M. V.; Fratoddi, I. Network assembly of gold nanoparticles linked through fluorenyl dithiol bridge. J. Mater. Chem. C 2014, 2, 2517–2527.Google Scholar
  55. [55]
    Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M. V. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: Loading and release study. J. Colloid Interf. Sci. 2014, 418, 52–60.Google Scholar
  56. [56]
    Battocchio, C.; Fratoddi, I.; Venditti, I.; Yarzhemsky, V. G.; Norov, Y. V.; Russo, M. V.; Polzonetti, G. Exafs in total refelexion (reflexafs) for the study of organometallic Pd(II) thiol complexes based self-assembled monolayers on gold. Chem. Phys. 2011, 379, 92–98.Google Scholar
  57. [57]
    Cedervall, T.; Lynch, I.; Foy, M.; Berggard, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5754–5756.Google Scholar
  58. [58]
    Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A. The nanoparticle-protein complex as a biological entity; A complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 2007, 134-135, 167–174.Google Scholar
  59. [59]
    Lynch I.; Dawson, K. A. Protein-nanoparticle interactions. Nano Today, 2008, 3, 40–47.Google Scholar
  60. [60]
    Casals, E.; Pfaller, T.; Duschl, A.; Oosting, G. J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010, 4, 3623–3632.Google Scholar
  61. [61]
    Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bandelli-Bombelli, F.; Dawson, K. A. Physical-chemical aspects of the protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–3534.Google Scholar
  62. [62]
    Perdonet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovih, M. Adverse effects of citrate-gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.Google Scholar
  63. [63]
    Rivera Gil, P.; Huhn, D.; del Mercato, L. L.; Sasse, D.; Parak, W. J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 2010, 62, 115125.Google Scholar
  64. [64]
    Chitharani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and the shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.Google Scholar
  65. [65]
    Murphy, C. J.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.Google Scholar
  66. [66]
    De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticlesafter intravenous injection. Biomaterials 2008, 29, 1912–1919.Google Scholar
  67. [67]
    Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf., B 2008, 66, 274–280.Google Scholar
  68. [68]
    Abdel Halim, M. A. The influence of size and exposure duration of gold nanoparticles on gold nanoparticle levels in several rat organs in vivo. J. Cell Sci. Ther. 2012, 3, 1000129.Google Scholar
  69. [69]
    Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Sabella, S.; Maiorano, G.; Falqui, A.; Bertoni, G.; Congolani, R. In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res. 2011, 4, 405–413.Google Scholar
  70. [70]
    Simpson, C. A.; Salleng, K. J.; Cliffel, D. E.; Feldheim, D. L. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine: NBM 2013, 9, 257–263.Google Scholar
  71. [71]
    Simpson, C. A.; Huffman, B. J.; Gerdon, A. E.; Cliffel, D. E. Unexpected toxicity of mono layer protected gold clusters eliminated by PEG-thiol place exchange reactions. Chem. Res. Toxicol. 2010, 23, 1608–1616.Google Scholar
  72. [72]
    Cazacu, A.; Bindar, D.; Tartau, L.; Hritcu, L.; Stefan, M.; Nita, L.; Ionescu, C.; Nica, V.; Rusu, G.; Dobromir, M. et al. Effect on nerve structures of functionalized gold-chitosan nanoparticles obtained by one pot synthesis. An. Stiint. Univ. “Alexandru Ioan Cuza” Iasi, Sect. II a: Genet. Biol. Mol. 2011, 12, 45–49.Google Scholar
  73. [73]
    Esumi, K.; Takei, N.; Yoshimura, T. Antioxidant potentiality of gold-chitosan nanocomposites. Colloids Surf. B 2003, 32, 117–123.Google Scholar
  74. [74]
    Stefan, M.; Melnig, V.; Pricop, D.; Neagu, A.; Mihasan, M.; Tartu, L. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats. Mater. Sci. Eng. C 2013, 33, 550–556.Google Scholar
  75. [75]
    Coradeghini, R.; Gioria, S.; Garcia, C. P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicology Lett. 2013, 217, 205–216.Google Scholar
  76. [76]
    Yamada K. M.; Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007, 130, 601–610.Google Scholar
  77. [77]
    Lee, J.; Lilly, G. D.; Doty, R. C.; Podsiadlo, P.; Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009, 5, 1213–1221.Google Scholar
  78. [78]
    Ponti, J.; Colognato, R.; Rauscher, H.; Gloria, S.; Broggi, F.; Franchini, F.; Pascual, C.; Guidetti, G.; Rossi, F. Colony forming efficiency and microscopy analysis of multi-well carbon nanotubes cell interactions. Toxicology Lett. 2010, 197, 29–37.Google Scholar
  79. [79]
    Chen, Y. S.; Hung, Y. C.; Iau, I.; Huang, G. S. Assessement of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 2009, 4, 858–864.Google Scholar
  80. [80]
    Sun, L. L.; Liu, D. J.; Wang, Z. X. Functional gold nanoparticle-peptide complexes as cell targeting agents. Langmuir 2008, 24, 10293–10297.Google Scholar
  81. [81]
    Tkachenko, A. G.; Xie, H.; Liu, Y.; Coleman, D.; Ryan, J.; Glomn, W. R.; Shipton, M. K.; Franzen, S.; Feldheim, D. L. Cellular traiectories of peptide modified gold particle complexes: Comparison of nuclear localization signals and peptide tranduction domain. Bioconjugate Chem. 2004, 15, 482–490.Google Scholar
  82. [82]
    Khan, J. A.; Pillai, B.; Das, T. K.; Singh, Y.; Maiti, S. Molecular effects of uptake of gold nanoparticles in hela cells. Chem. Biochem. 2007, 8, 1237–1240.Google Scholar
  83. [83]
    Kuo, C. W.; Lai, J. J.; Wei, K. H.; Chen, P. Studies of surface modified gold nanowires inside living cells. Adv. Funct. Mater. 2007, 17, 3707–3714.Google Scholar
  84. [84]
    Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Controlled Rel. 2006, 114, 343–347.Google Scholar
  85. [85]
    Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22, 2–5.Google Scholar
  86. [86]
    Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.Google Scholar
  87. [87]
    Salmaso, S.; Caliceti, P.; Amendola, V.; Meneghetti, M.; Magnusson, J. P.; Pasparakis, G.; Alexander, C. Cell up-take control of gold nanoparticles functionalized with thermoresponsive polymers. J. Mater. Chem. 2009, 19, 1608–1615.Google Scholar
  88. [88]
    Qu Y. H.; Lü, X. Y. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fbroblasts fetal. Biomed. Mater. 2009, 4, 025007.Google Scholar
  89. [89]
    Patra, H. K.; Dasgupta, A. K. Cancer cell response to nanoparticles: Criticality and optimality. Nanomed. Nanotech. Biol. Med. 2012, 8, 842–852Google Scholar
  90. [90]
    Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordination Chem. Rev. 2005, 249, 1870–1901.Google Scholar
  91. [91]
    Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701–708.Google Scholar
  92. [92]
    Huff, T. B.; Hansen, M. N.; Zhao, Y.; Cheng, J. X.; Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 2007, 23, 1596–1599.Google Scholar
  93. [93]
    Alkilany, A. M.; Shatanawi, A.; Kurtz, T.; Caldwell, R. B.; Caldwell, R. W. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: Importance of surface modification. Small 2012, 8, 1270–1278.Google Scholar
  94. [94]
    Cortesi, R.; Esposito, E.; Menegatti, E.; Gambari, R.; Nastruzzi, C. Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried dna. Int. J. Pharm. 1996, 139, 69–78.Google Scholar
  95. [95]
    Mirska, D.; Schirmer, K.; Funari, S.; Langner, A.; Dobner, B.; Brezesinski, B. Biophysical and biochemical properties of a binary lipid mixture for dna transfection. Colloids Surf. B 2005, 40, 51–59.Google Scholar
  96. [96]
    Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Prot. Natl. Acad. Sci. U.S.A. 2003, 100, 13549–13554.Google Scholar
  97. [97]
    Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.Google Scholar
  98. [98]
    James, W. D.; Hirsch, L. R.; West, J. L.; O’Neal, P. D.; Payne, J. D. Application of inaa to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 2007, 271, 455–459.Google Scholar
  99. [99]
    Khlebtsov, N. G.; Dykman, L. A.; Terentyuk, G. S. Iii euroasian congress on medical physics and engineering. In Moscow State Univ. Publ., editor, Med.l Phys.s 2010, 3, 209–211.Google Scholar
  100. [100]
    Melancon, M. P.; Lu, W.; Yang, Z.; Zhang, R.; Cheng, Z.; Elliot, A. M.; Stafford, J.; Olson, T.; Zhang, J. Z.; Li, C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 2008, 7, 1730–1739.Google Scholar
  101. [101]
    Su, C. H.; Sheu, H. S.; Lin, C. Y.; Huang, C. C.; Lo, Y. W.; Pu, Y. C.; Weng, J. C.; Shieh, D. B.; Chen, J. H.; Yeh, C. S. Nanoshell magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2007, 129, 2139–2146.Google Scholar
  102. [102]
    Xia, Y. N; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.Google Scholar
  103. [103]
    Dykman, L. A.; Khlebtson, N. G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.Google Scholar
  104. [104]
    Yang, X. M.; Stein, E. W.; Ashkenazi, S.; Wang, L. V. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009, 1, 360–368.Google Scholar
  105. [105]
    Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Ean, D. H.; Cutler, C.; Xia, Y. N. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 2013, 13, 581–585.Google Scholar
  106. [106]
    Kim, C.; Cho, E. C.; Chen, J. Y.; Song, K. H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C. M.; Gao, F.; Xia, Y. N. et al. In vivo molecular photoacustic tomography of melanomas targeted by bioconjugated gold nanogages. ACS Nano 2010, 4, 4559–4564.Google Scholar
  107. [107]
    Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducer for cancer treatment. Small 2010, 6, 811–817.Google Scholar
  108. [108]
    Au, L.; Zhang, Q.; Cobley, C. M.; Gidding, M.; Schwartz, A. G.; Chen, J. Y.; Xia, Y. N. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 2010, 4, 35–42.Google Scholar
  109. [109]
    Rodriguez-Lorenzo, L.; Alvarez-Puebla, R. A.; Garcia de Abajo, F. J.; Liz-Marzan, L. M. Surface enhanced raman scattering using star-shaped gold colloidal nanoparticles. J. Phys. Chem. C 2010, 114, 7336–7340.Google Scholar
  110. [110]
    Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfaxctant free synthesis, 3D modelling and two photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.Google Scholar
  111. [111]
    Trigari, S.; Rindi, A.; Margheri, G.; Sottini, S.; Dellapiane, G.; Giorgetti, E. Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum. J. Mater. Chem. 2011, 21, 6531–6549.Google Scholar
  112. [112]
    Salinas, K.; Kereselidze, Z.; De Luna, F.; Peralta, X. G.; Santamaria, F. Transient extracellular application of nanostars increase hippocampal neuronal activity. J. Nanobiotechnology 2014, 12, 31–38.Google Scholar
  113. [113]
    Navarro, J. R. G.; Manchon, D.; Lerouge, F.; Blanchard, N. P.; Marotte, S.; Leverrier, J.; Marvel, J.; Chaput, F.; Micouin, G.; Gabudean, A. A. et al. Synthesis of pegylated gold nanostares and bipyramids for intracellular uptake. Nanotechnology 2012, 23, 465602.Google Scholar
  114. [114]
    Dam, D. H. M.; Lee, R. C.; Odom, T. W. Improved in vitro efficacy of gold nanoconstructs by increased loading of g-quadruplex aptamer. Nano Lett. 2014, 14, 2843–2848.Google Scholar
  115. [115]
    Dam, D. H. M.; Culver, K. S. B.; Odom, T. W. Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol. Pharmaceutics 2014, 11, 580–587.Google Scholar
  116. [116]
    Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hebert, M.; Kriz, J.; Winnik, F. M.; Maysinger, D. Microglial response to gold nanoparticles. ACS Nano 2010, 4, 2595–2606.Google Scholar
  117. [117]
    Li, W. T.; Sun, X. L.; Wang, Y.; Niu, G.; Chen, X. Y.; Qian, Z. Y.; Nie, L. M. In vivo quantitative photoacustic microscopy of gold nanostar kinetics in mouse organ. Biomed. Optics Express 2014, 5, 2679–2685.Google Scholar
  118. [118]
    Rivera-Gil, P.; Jamenez-de Aberasturi, D.; Wulf, V.; Pelaz, B.; Del Pino, P.; Zhao, Y.; De La Fluente, J. M.; Ruiz de Larramendi, I.; Liang, X. J.; Parak, W. J. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 2013, 46, 743–749.Google Scholar
  119. [119]
    Johnston, H.; Pojana, G.; Zuin, S.; Jacobsen, N. R.; Moller, P.; Loft, S.; Semmler-Behnke, M.; McGuiness, C.; Balharry, D.; Marcomini, A. et al. Engineered nanomaterial risk. essons from completed nanotoxicology studies: Potential solutions to current and future challenges. Crit. Rev. Toxicol. 2013, 43, 1–20.Google Scholar
  120. [120]
    Roebben, G.; Ramirez-Garcia, S.; Hackley, V. A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C. M.; Rawle, A.; Elder, A. et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res. 2011, 13, 2675–2687.Google Scholar
  121. [121]
    Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicity: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.Google Scholar
  122. [122]
    Tedesco, S.; Doyle, H.; Redmond, G.; Sheehan, D. Gold nanoparticles and oxidative stress in mytilus edulis. Marine Environ. Res. 2008, 66, 131–133.Google Scholar
  123. [123]
    Kong, B.; Seog. J. H.; Graham, L. M.; Lee, S. B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 2011, 6, 929–941.Google Scholar
  124. [124]
    Malugin, A.; Ghandehari, H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. J. Appl. Toxicol. 2010, 30, 212–217.Google Scholar
  125. [125]
    Albanese A.; Chan, W. C. Effect of gold nanoparticles aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489.Google Scholar
  126. [126]
    Elsaesser, A.; Howard, C. V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012, 64, 129–137.Google Scholar
  127. [127]
    Oberdörster, G. Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J. Intern. Med. 2010, 267, 89–105.Google Scholar
  128. [128]
    Oberdöster, G.; Mayriard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. et al. Principles for charcterizing the potential human health effects from exposure to nanoparticles: Elements for a screening strategy. Part. Fibre Toxicol. 2005, 2, 8–1/35.Google Scholar
  129. [129]
    Elsaesser, A.; Taylor, A.; de Yanés, G. S.; McKerr, G.; Kim, E. M.; O’Hare, E.; Howard, C. V. Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine 2010, 5, 1447–1457.Google Scholar
  130. [130]
    Wittmaack, K. In search of the most relevant parameters for quantifying lung inflannatory response to nanoparticle exposure: Particle number, surface area or what ? Environ. Health Perspect. 2007, 115, 187–194.Google Scholar
  131. [131]
    Joris, F.; Manshian, B. B.; Peynshaert, K.; De Smedt, S. C.; Braeckman, K.; Soenen, S. J. Assessing nanoparticle toxicity in cell-dased assays: Influence of the cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem. Soc. Rev. 2013, 42, 8339–8359.Google Scholar
  132. [132]
    Rushton, E. K.; Jiang, J.; Leonard, S. S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X.; Gelein, R.; Finkelstein, J.; Oberdorster, G. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health, Part A 2010, 73, 445–461.Google Scholar
  133. [133]
    Gulson. B.; Wong, H. Stable isotopic tracing: A way forward for nanotoxicology. Environ. Health Perspect. 2006, 114, 1486–1488.Google Scholar
  134. [134]
    Wang, L. M.; Li, Y. F.; Zhou, L. J.; Liu, Y.; Meng, L.; Zhang, K.; Wu, X. C.; Zhang, L. L.; Li, B.; Chen, C. Y. Characterization of gold nanorods in vivo by integrated analytical techniques: Their uptake, retention and chemical forms. Anal. Bioanal. Chem. 2010, 396, 1105–1114.Google Scholar
  135. [135]
    Darien, B. J.; Sims, P. A.; Kruse-Elliott, K. T.; Homan, T. S.; Cashwell, R. J.; Albrecht, R. M. Use of colloidal gold and neutron activation in correlative microscopic labeling and label quantitation. Scanning Microsc. 1995, 9, 773–780.Google Scholar
  136. [136]
    Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010, 31, 7606–7619.Google Scholar
  137. [137]
    Lehmann, A. D.; Parak, W. J.; Zhang, F.; Ali, Z.; Röcker, C.; Nienhaus, G. U.; Gehr, P.; Rothen-Rutishauser, B. Fluorescent magnetic nanoparticles induce a dose dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 2010, 6, 753–762.Google Scholar
  138. [138]
    Teeguarden, J. G.; Hinderliter, P. M.; Orr, G.; Thrall, B. D.; Pounds, J. G. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 2007, 95, 300–312.Google Scholar
  139. [139]
    Alvarez, P. J. J.; Colvin, V.; Lead, J.; Stone, V. Research priorities to advance eco-responsible nanotechnology. ACS Nano 2009, 3, 1616–1619.Google Scholar
  140. [140]
    Chithrani, B. D.; Chang, W. C. W. Elucidating the mechanism of cellular uptakeand removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.Google Scholar
  141. [141]
    Green, J. J.; Chiu, E.; Leshchiner, E. S.; Shi, J.; Langer, R.; Anderson, D. G. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 2007, 7, 874–879.Google Scholar
  142. [142]
    Marquis, B. J.; Love, S. A.; Brown, K. L.; Haynes, C. L. Analytical methods to assess nanoparticle toxicity. Analyst 2009, 134, 425–439.Google Scholar
  143. [143]
    Soenen, S. J.; De Cuyper, M. Assessing cytotoxicity of (iron-oxide based) nanoparticles: An overwiew of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging 2009, 4, 207–219.Google Scholar
  144. [144]
    Monteiro-Riviere, N. A.; Inman, A. O.; Zhang, L. W. Limitations and relative utility of screening assay to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmcol. 2009, 234, 222–235.Google Scholar
  145. [145]
    Dhawan, A.; Sharma, V. Toxicology assessment of nanoparticles: Methods and challenges. Anal. Bioanal. Chem. 2010, 398, 589–605.Google Scholar
  146. [146]
    Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interfaces. Nat. Mater. 2009, 8, 543–557.Google Scholar
  147. [147]
    Torrano, A. A.; Pereira, A. S.; Oliviera, O. N.; Barros-Timmons, A. Probing the interactions of oppositely charged gold nanoparticles with dppg and dppc langmuir monolayers as cell membrane models. Colloids Surf., B 2013, 108, 120–126.Google Scholar
  148. [148]
    Negoda, A.; Liu, Y.; Hou, W. C.; Corredor, C.; Moghadam, B. Y.; Mussolf, C.; Li, W.; Walker, L.; Westerhoff, P.; Mason, A. J. et al. Engineered nanomaterials interactions with bilayer lipid membranes: Screening platforms to assess nanoparticle toxicity. Int. J. Biomed. Nanosci. Nanothechnol. 2013, 3, 52–83.Google Scholar
  149. [149]
    Chen, K. L.; Bothun, G. D. Nanoparticles meet cell membranes: Probing non specific interactions using model membranes. Environ. Sci. Technol. 2014, 48, 873–880.Google Scholar
  150. [150]
    Podila, R.; Brown, J. M. Toxicity of engineered nanomaterials: A physicochemical perspective. J. Biochem. Mol. Toxicol. 2013, 27, 50–55.Google Scholar
  151. [151]
    Xu, M. S.; Fujita, D.; Kajiwara, S.; Minowa, T.; Li, X. L.; Takemura, T.; Iwai, H.; Hanagata, N. Contribution of physicochemical characterization of monooxides to cytotoxicity. Biomaterials 2010, 31, 8022–8031.Google Scholar
  152. [152]
    Fenoglio, I.; Greco, G.; Tomatis, M.; Muller, J.; Raymondo-Pinero, E.; Béguin, F.; Fonseca, A.; Nagy, J. B.; Lison, D.; Fubini, B. Structural defects play a major role in the acute lung toxicity of multiwalled carbon nanotubes: physicochemical aspects. Chem. Res. Toxicol. 2008, 21, 1690–1697.Google Scholar
  153. [153]
    National Research Council. Toxicity testing in the 21st century: A vision and strategy, National Academies Press, Washington, DCEdition, 2007. available at http://dels.nas.edu/.Google Scholar
  154. [154]
    National Research Council. Toxicity in the 21st century: The role of the national toxicology program, National Academies Press, Washington, DCEdition, 2004. available at http://ntp.niehs.nih.gov/.Google Scholar
  155. [155]
    Sun, B. B.; Li, R. B.; Wang, X.; Xia, T. Predictive toxicological paradigm and high throughput approach for toxicity screening of engineered nanomaterials. Int. J. Biomed. Nanosci. Nanothechnol. 2013, 3, 4–18.Google Scholar
  156. [156]
    Kim, E. Y.; Schulz, R.; Swantek, P.; Kunstman, K.; Malim, M. H.; Wolinsky, S. M. Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene Ther. 2012, 19, 347–353.Google Scholar
  157. [157]
    Patel, S.; Jung, D.; Yin, P. T.; Carlton, P.; Yamamoto, M.; Bando, T.; Sugiyama, H.; Lee, K. B. Nanoscript: A nanoparticle-based artificial transcription factor for effective gene delivey. ACS Nano 2014, 8, 8959–8967.Google Scholar
  158. [158]
    Rauch, J.; Kolch. W.; Laurent, S.; Mahmoudi, M. Big signals from small particles: Regulation of cell signaling pathways by nanoparticles. Chem. Rev. 2013, 113, 3391–3406Google Scholar
  159. [159]
    Xue, J. P.; Shan, L. L.; Chen, H. Y.; Li, Y.; Zhu, H. Y.; Deng, D. W.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. Visual detection of STAT5B gene expression in living cells using the hairpin DNA modified gold nanoparticles. Biosens. Bioelectron. 2013, 41, 71–77.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ilaria Fratoddi
    • 1
    Email author
  • Iole Venditti
    • 1
  • Cesare Cametti
    • 2
  • Maria Vittoria Russo
    • 1
  1. 1.Dipartimento di ChimicaUniversita’ di Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento di Fisica and INFM CNR-SOFTUniversita’ di Roma “La Sapienza”RomeItaly

Personalised recommendations