Nano Research

, Volume 8, Issue 5, pp 1710–1717 | Cite as

Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies

  • Huang Tang
  • Peibo Gao
  • Zhihao BaoEmail author
  • Bin Zhou
  • Jun Shen
  • Yongfeng Mei
  • Guangming WuEmail author
Research Article


Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electrical conductivity and strong mechanic performance, we synthesized graphene aerogels by the magnesiothermic reduction of a freeze-dried graphene oxide (GO) self-assembly and subsequent etching of the formed MgO in acid solution. The reduced graphene oxide (rGO) aerogel samples exhibited densities as low as 1.1 mg·cm−3. The rGO aerogel was very resilient, exhibiting full recoveryeven after being compressed by strains of up to 80%; its elastic modulus (E) scaled with density (ρ) as E∼ρ2. The rGO aerogels also exhibited high conductivities (e.g., 27.7 S·m−1 at 3.6 mg·cm−3) and outperformed many rGO aerogels fabricated by other reduction processes. Such outstanding properties were ascribed to the microstructures inherited from the freeze-dried GO self-assembly and the magnesiothermic reduction process.


graphene aerogel magnesiothermic reduction conductivity mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_672_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.60 MB.

Supplementary material, approximately 1.86 MB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  3. [3]
    Geim, A. K. Graphene: Status and prospects. science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  4. [4]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  5. [5]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  6. [6]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  7. [7]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  8. [8]
    Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A. et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 2008, 101, 267601.CrossRefGoogle Scholar
  9. [9]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. Acs Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  10. [10]
    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.CrossRefGoogle Scholar
  11. [11]
    Wu, Z.-S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Muellen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  12. [12]
    Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375.CrossRefGoogle Scholar
  13. [13]
    Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.CrossRefGoogle Scholar
  14. [14]
    Zhao, J. P.; Ren, W. C.; Cheng, H.-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012, 22, 20197–20202.CrossRefGoogle Scholar
  15. [15]
    Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutiérrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830.CrossRefGoogle Scholar
  16. [16]
    Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.CrossRefGoogle Scholar
  17. [17]
    Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.CrossRefGoogle Scholar
  18. [18]
    Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.CrossRefGoogle Scholar
  19. [19]
    Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069.CrossRefGoogle Scholar
  20. [20]
    Pham, H. D.; Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Chung, J. S.; Shin, E. W.; Kim, S. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem. Commun. 2011, 47, 9672–9674.CrossRefGoogle Scholar
  21. [21]
    Li, Y. R.; Chen, J.; Huang, L.; Li, C.; Hong, J.-D.; Shi, G. Q. Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 2014, 26, 4789–4793.CrossRefGoogle Scholar
  22. [22]
    Lin, Y. R.; Ehlert, G. J.; Bukowsky, C.; Sodano, H. A. Superhydrophobic functionalized graphene aerogels. ACSAppl. Mater. Interfaces 2011, 3, 2200–2203.CrossRefGoogle Scholar
  23. [23]
    Bao, Z. H.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. T. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172–175.CrossRefGoogle Scholar
  24. [24]
    Xing, A.; Zhang, J.; Bao, Z. H.; Mei, Y. F.; Gordin, A. S.; Sandhage, K. H. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries. Chem. Commun. 2013, 49, 6743–6745.CrossRefGoogle Scholar
  25. [25]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  26. [26]
    Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043–1049.CrossRefGoogle Scholar
  27. [27]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  28. [28]
    Warner, J. H.; Rümmeli, M. H.; Gemming, T.; Büchner, B.; Briggs, G. A. D. Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 2009, 9, 102–106.CrossRefGoogle Scholar
  29. [29]
    Nguyen, S. T.; Ruoff, R. S.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  30. [30]
    Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  31. [31]
    Liu, H. T.; Zhang, L.; Guo, Y. L.; Cheng, C.; Yang, L. J.; Jiang, L.; Yu, G.; Hu, W. P.; Liu, Y. G.; Zhu, D. B. Reduction of graphene oxide to highly conductive graphene by lawesson’s reagent and its electrical applications. J. Mater. Chem. C 2013, 1, 3104–3109.CrossRefGoogle Scholar
  32. [32]
    Fernandez-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.CrossRefGoogle Scholar
  33. [33]
    Salari-Sharif, L.; Schaedler, T. A.; Valdevit, L. Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 2014, 29, 1755–1770.CrossRefGoogle Scholar
  34. [34]
    Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.CrossRefGoogle Scholar
  35. [35]
    Worsley, M. A.; Kucheyev, S. O.; Satcher, J. H.; Hamza, A. V.; Baumann, T. F. Mechanically robust and electrically conductive carbon nanotube foams. Appl. Phys. Lett. 2009, 94, 073115.Google Scholar
  36. [36]
    Liu, S. Y.; Chen, K.; Fu, Y.; Yu, S. Y.; Bao, Z. H. Reduced graphene oxide paper by supercritical ethanol treatment and itselectrochemical properties. Appl. Sur. Sci. 2012, 258, 5299–5303.CrossRefGoogle Scholar
  37. [37]
    Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode forlithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Materials Science and EngineeringFudan UniversityShanghaiChina

Personalised recommendations